HyperAI

Speech Recognition On Librispeech Test Clean

المقاييس

Word Error Rate (WER)

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجWord Error Rate (WER)
specaugment-a-simple-data-augmentation-method2.7
fast-simpler-and-more-accurate-hybrid-asr2.10
multi-head-state-space-model-for-speech1.76
conformer-convolution-augmented-transformer1.9
rwth-asr-systems-for-librispeech-hybrid-vs2.3
iterative-pseudo-labeling-for-speech2.10
cr-ctc-consistency-regularization-on-ctc-for2.02
improved-training-of-end-to-end-attention3.82
neural-network-language-modeling-with-letter3.06
transformer-based-asr-incorporating-time1.9
the-pytorch-kaldi-speech-recognition-toolkit6.2
a-comparative-study-on-transformer-vs-rnn-in2.6
snips-voice-platform-an-embedded-spoken6.4
w2v-bert-combining-contrastive-learning-and1.4
cr-ctc-consistency-regularization-on-ctc-for1.88
end-to-end-asr-from-supervised-to-semi2.31
state-of-the-art-speech-recognition-using2.20
zipformer-a-faster-and-better-encoder-for2.00
high-precision-medical-speech-recognition0.985
contextnet-improving-convolutional-neural2
crf-based-single-stage-acoustic-modeling-with4.09
librispeech-transducer-model-with-internal2.23
hubert-self-supervised-speech-representation1.8
fast-conformer-with-linearly-scalable1.46
graph-convolutions-enrich-the-self-attention2.11
qwen-audio-advancing-universal-audio2.0
wavlm-large-scale-self-supervised-pre1.8
jasper-an-end-to-end-convolutional-neural2.95
النموذج 298.0
contextnet-improving-convolutional-neural1.9
squeezeformer-an-efficient-transformer-for2.47
fadam-adam-is-a-natural-gradient-optimizer1.34
self-training-and-pre-training-are2.7
speechstew-simply-mix-all-available-speech1.7
letter-based-speech-recognition-with-gated4.8
self-training-and-pre-training-are1.5
النموذج 374.3
pushing-the-limits-of-semi-supervised1.4
semi-supervised-speech-recognition-via-local7.19
conformer-convolution-augmented-transformer2
end-to-end-asr-from-supervised-to-semi2.03
conformer-convolution-augmented-transformer2.1
let-ssms-be-convnets-state-space-modeling4.4
improving-rnn-transducer-based-asr-with2.0
espresso-a-fast-end-to-end-neural-speech2.8
model-unit-exploration-for-sequence-to3.60
fully-convolutional-speech-recognition3.26
wav2vec-2-0-a-framework-for-self-supervised1.8
النموذج 495.5
e-branchformer-branchformer-with-enhanced1.81
transformer-based-acoustic-modeling-for2.26
quartznet-deep-automatic-speech-recognition2.69
improving-end-to-end-speech-recognition-with-15.42
contextnet-improving-convolutional-neural2.3
specaugment-a-simple-data-augmentation-method2.5
النموذج 564.8
deep-speech-2-end-to-end-speech-recognition5.33
mt4ssl-boosting-self-supervised-speech3.4
asapp-asr-multistream-cnn-and-self-attentive1.75
jasper-an-end-to-end-convolutional-neural2.84
samba-asr-state-of-the-art-speech-recognition1.17
improved-noisy-student-training-for-automatic1.7
amortized-neural-networks-for-low-latency8.6
speechstew-simply-mix-all-available-speech2.0