HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Speech Enhancement
Speech Enhancement On Deep Noise Suppression
Speech Enhancement On Deep Noise Suppression
المقاييس
PESQ-WB
SI-SDR-WB
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
PESQ-WB
SI-SDR-WB
Paper Title
Repository
BSRNN-S
3.42
21.3
High Fidelity Speech Enhancement with Band-split RNN
Noisy
1.58
9.1
-
-
RemixIT (w Sudo U=32)
2.34
16.0
RemixIT: Continual self-training of speech enhancement models via bootstrapped remixing
SN-Net
-
-
Interactive Speech and Noise Modeling for Speech Enhancement
-
Sudo rm -rf (U=32)
2.95
19.7
RemixIT: Continual self-training of speech enhancement models via bootstrapped remixing
ZipEnhancer (S)
3.69
21.15
-
-
aTENNuate
2.98
-
Real-time Speech Enhancement on Raw Signals with Deep State-space Modeling
-
BSRNN-S + MGD
-
21.4
High Fidelity Speech Enhancement with Band-split RNN
DCTCRN-S
2.77
-
Real-time Monaural Speech Enhancement With Short-time Discrete Cosine Transform
-
MFNET
3.43
20.31
A Mask Free Neural Network for Monaural Speech Enhancement
BSRNN-16k
3.45
21.1
High Fidelity Speech Enhancement with Band-split RNN
ZipEnhancer (M)
3.81
22.22
-
-
DCTCRN-P
2.82
-
Real-time Monaural Speech Enhancement With Short-time Discrete Cosine Transform
-
TF-Locoformer (M)
3.72
23.3
TF-Locoformer: Transformer with Local Modeling by Convolution for Speech Separation and Enhancement
DCCRN-E-Aug
-
-
DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement
FRCRN
3.23
-
Monaural Speech Enhancement with Complex Convolutional Block Attention Module and Joint Time Frequency Losses
DTLN
-
16.34
Dual-Signal Transformation LSTM Network for Real-Time Noise Suppression
FullSubNet+
3.218
16.81
FullSubNet+: Channel Attention FullSubNet with Complex Spectrograms for Speech Enhancement
DCTCRN-T
2.82
-
Real-time Monaural Speech Enhancement With Short-time Discrete Cosine Transform
-
Sudo rm-rf (U=8)
2.69
18.6
Continual self-training with bootstrapped remixing for speech enhancement
0 of 34 row(s) selected.
Previous
Next