HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
سماك
Smac On Smac 27M Vs 30M
Smac On Smac 27M Vs 30M
المقاييس
Average Score
Median Win Rate
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Average Score
Median Win Rate
Paper Title
Repository
DMIX
19.43
85.45
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
VDN
18.45
63.12
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DIQL
14.45
6.02
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
19.41
84.77
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
Heuristic
-
0
The StarCraft Multi-Agent Challenge
-
DDN
19.71
91.48
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QPLEX
19.33
78.12
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
DPLEX
19.62
90.62
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
IQL
14.01
2.27
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
-
49
The StarCraft Multi-Agent Challenge
-
QMIX
-
49
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
0 of 11 row(s) selected.
Previous
Next
Smac On Smac 27M Vs 30M | SOTA | HyperAI