HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Smac 1
Smac On Smac Off Distant Parallel
Smac On Smac Off Distant Parallel
المقاييس
Median Win Rate
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Median Win Rate
Paper Title
Repository
DIQL
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DDN
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
IQL
0.0
-
-
QMIX
0.0
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
DMIX
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
MASAC
0.0
Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
QTRAN
0.0
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
VDN
85.0
Value-Decomposition Networks For Cooperative Multi-Agent Learning
COMA
0.0
Counterfactual Multi-Agent Policy Gradients
DRIMA
95.0
Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning
-
0 of 10 row(s) selected.
Previous
Next