HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تعبئة_الفراغات
Slot Filling On Mixatis
Slot Filling On Mixatis
المقاييس
Micro F1
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Micro F1
Paper Title
MISCA
90.5
MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention
Co-guiding Net
89.8
Co-guiding Net: Achieving Mutual Guidances between Multiple Intent Detection and Slot Filling via Heterogeneous Semantics-Label Graphs
SSRAN
89.4
A Scope Sensitive and Result Attentive Model for Multi-Intent Spoken Language Understanding
BiSLU
89.4
Joint Multiple Intent Detection and Slot Filling with Supervised Contrastive Learning and Self-Distillation
UGEN
89.2
Incorporating Instructional Prompts into a Unified Generative Framework for Joint Multiple Intent Detection and Slot Filling
Topic Information
88.7
Exploiting Topic Information for Joint Intent Detection and Slot Filling
DGIF
88.5
A Dynamic Graph Interactive Framework with Label-Semantic Injection for Spoken Language Understanding
Global Intent-Slot Co-occurence
88.5
Enhancing Joint Multiple Intent Detection and Slot Filling with Global Intent-Slot Co-occurrence
SLIM
88.5
SLIM: Explicit Slot-Intent Mapping with BERT for Joint Multi-Intent Detection and Slot Filling
Uni-MIS
88.3
Uni-MIS: United Multiple Intent Spoken Language Understanding via Multi-View Intent-Slot Interaction
GL-GIN
88.3
GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling
TFMN
88.0
A Transformer-based Threshold-Free Framework for Multi-Intent NLU
SLIM (PACL)
87.3
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
TFMN (PACL)
86.7
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
RoBERTa (PACL)
86.0
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
0 of 15 row(s) selected.
Previous
Next
Slot Filling On Mixatis | SOTA | HyperAI