HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Single Image Deraining
Single Image Deraining On Rain100L
Single Image Deraining On Rain100L
المقاييس
PSNR
SSIM
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
PSNR
SSIM
Paper Title
Repository
IPT
41.62
0.988
Pre-Trained Image Processing Transformer
MCW-Net
39.73
0.988
MCW-Net: Single Image Deraining with Multi-level Connections and Wide Regional Non-local Blocks
CAPTNet
39.22
0.981
Prompt-based Ingredient-Oriented All-in-One Image Restoration
PReNet
37.48
0.979
Progressive Image Deraining Networks: A Better and Simpler Baseline
MPRNet
36.40
0.965
Multi-Stage Progressive Image Restoration
MAXIM
-
0.977
MAXIM: Multi-Axis MLP for Image Processing
Instruct-IPT
39.35
0.977
Instruct-IPT: All-in-One Image Processing Transformer via Weight Modulation
MSPFN
32.40
0.933
Multi-Scale Progressive Fusion Network for Single Image Deraining
M3SNet
40.04
0.985
A Mountain-Shaped Single-Stage Network for Accurate Image Restoration
HINet
37.28
0.97
HINet: Half Instance Normalization Network for Image Restoration
RESCAN
-
0.881
Recurrent Squeeze-and-Excitation Context Aggregation Net for Single Image Deraining
-
MHNet
39.47
0.984
Mixed Hierarchy Network for Image Restoration
SEMI
25.03
0.842
Semi-supervised Transfer Learning for Image Rain Removal
DerainNet
-
0.884
Clearing the Skies: A deep network architecture for single-image rain removal
IR-SDE
38.3
0.9805
Image Restoration with Mean-Reverting Stochastic Differential Equations
UMRL
-
0.923
Uncertainty Guided Multi-Scale Residual Learning-using a Cycle Spinning CNN for Single Image De-Raining
SFNet
38.21
0.974
Selective Frequency Network for Image Restoration
Restormer
38.99
0.978
Restormer: Efficient Transformer for High-Resolution Image Restoration
DIDMDN
-
0.741
Density-aware Single Image De-raining using a Multi-stream Dense Network
0 of 19 row(s) selected.
Previous
Next