HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف الصور شبه المُشرف عليه
Semi Supervised Image Classification On 2
Semi Supervised Image Classification On 2
المقاييس
Top 1 Accuracy
Top 5 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Top 1 Accuracy
Top 5 Accuracy
Paper Title
Semi-ViT (ViT-Huge)
84.3%
96.6%
Semi-supervised Vision Transformers at Scale
SimCLRv2 self-distilled (ResNet-152 x3, SK)
80.9%
95.5%
Big Self-Supervised Models are Strong Semi-Supervised Learners
SimCLRv2 (ResNet-152 x3, SK)
80.1%
95.0%
Big Self-Supervised Models are Strong Semi-Supervised Learners
SimCLRv2 distilled (ResNet-50 x2, SK)
80.2%
95.0%
Big Self-Supervised Models are Strong Semi-Supervised Learners
SimCLRv2 distilled (ResNet-50)
77.5%
93.4%
Big Self-Supervised Models are Strong Semi-Supervised Learners
TWIST (ResNet-50 x2)
75.3%
92.8%
Self-Supervised Learning by Estimating Twin Class Distributions
SimMatch + EPASS (ResNet-50)
75.3%
92.6
Debiasing, calibrating, and improving Semi-supervised Learning performance via simple Ensemble Projector
SimCLR (ResNet-50 4×)
-
92.6%
A Simple Framework for Contrastive Learning of Visual Representations
SequenceMatch (ResNet-50)
75.2%
91.9
SequenceMatch: Revisiting the design of weak-strong augmentations for Semi-supervised learning
SimCLRv2 (ResNet-50 x2)
73.9%
91.9%
Big Self-Supervised Models are Strong Semi-Supervised Learners
CoMatch + EPASS (ResNet-50)
74.1%
91.5
Debiasing, calibrating, and improving Semi-supervised Learning performance via simple Ensemble Projector
CoMatch (w. MoCo v2)
73.7%
91.4%
CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
Meta Pseudo Labels (ResNet-50)
73.89%
91.38%
Meta Pseudo Labels
CowMix (ResNet-152)
73.94%
91.24%
Milking CowMask for Semi-Supervised Image Classification
S4L-MOAM (ResNet-50 4×)
73.21%
91.23%
S4L: Self-Supervised Semi-Supervised Learning
Rotation + VAT + Ent. Min.
-
91.23%
S4L: Self-Supervised Semi-Supervised Learning
WCL (ResNet-50)
72.0%
91.2%
Weakly Supervised Contrastive Learning
SimCLR (ResNet-50 2×)
-
91.2%
A Simple Framework for Contrastive Learning of Visual Representations
CPC v2 (ResNet-161)
73.1%
91.2%
Data-Efficient Image Recognition with Contrastive Predictive Coding
RELICv2 (ResNet-50)
72.4%
91.2%
Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?
0 of 68 row(s) selected.
Previous
Next
Semi Supervised Image Classification On 2 | SOTA | HyperAI