HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف الصور شبه المُشرف عليه
Semi Supervised Image Classification On 1
Semi Supervised Image Classification On 1
المقاييس
Top 1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Top 1 Accuracy
Paper Title
REACT (ViT-Large)
81.6%
Learning Customized Visual Models with Retrieval-Augmented Knowledge
Meta Co-Training
80.7%
Meta Co-Training: Two Views are Better than One
Semi-ViT (ViT-Huge)
80%
Semi-supervised Vision Transformers at Scale
Semi-ViT (ViT-Large)
77.3%
Semi-supervised Vision Transformers at Scale
SimCLRv2 self-distilled (ResNet-152 x3, SK)
76.6%
Big Self-Supervised Models are Strong Semi-Supervised Learners
SimCLRv2 distilled (ResNet-50 x2, SK)
75.9%
Big Self-Supervised Models are Strong Semi-Supervised Learners
MSN (ViT-B/4)
75.7%
Masked Siamese Networks for Label-Efficient Learning
SimCLRv2 (ResNet-152 x3, SK)
74.9%
Big Self-Supervised Models are Strong Semi-Supervised Learners
SimCLRv2 distilled (ResNet-50)
73.9%
Big Self-Supervised Models are Strong Semi-Supervised Learners
SimMatchV2 (ResNet-50)
71.9%
SimMatchV2: Semi-Supervised Learning with Graph Consistency
DebiasPL (ResNet-50)
71.3%
Debiased Learning from Naturally Imbalanced Pseudo-Labels
BYOL (ResNet-200 x2)
71.2%
Bootstrap your own latent: A new approach to self-supervised Learning
Semi-ViT (ViT-Base)
71%
Semi-supervised Vision Transformers at Scale
PAWS (ResNet-50 4x)
69.9%
Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples
PAWS (ResNet-50 2x)
69.6%
Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples
BYOL (ResNet-50 x4)
69.1%
Bootstrap your own latent: A new approach to self-supervised Learning
SimMatch + EPASS (ResNet-50)
68.6%
Debiasing, calibrating, and improving Semi-supervised Learning performance via simple Ensemble Projector
CoMatch + EPASS (ResNet-50)
67.4%
Debiasing, calibrating, and improving Semi-supervised Learning performance via simple Ensemble Projector
TWIST (ResNet-50 x2)
67.2%
Self-Supervised Learning by Estimating Twin Class Distributions
SimMatch (ResNet-50)
67.2%
SimMatch: Semi-supervised Learning with Similarity Matching
0 of 58 row(s) selected.
Previous
Next
Semi Supervised Image Classification On 1 | SOTA | HyperAI