Semantic Textual Similarity On Sts Benchmark
المقاييس
Spearman Correlation
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Spearman Correlation |
---|---|
exploring-the-limits-of-transfer-learning | 0.886 |
sentence-bert-sentence-embeddings-using | 0.8615 |
universal-sentence-encoder | - |
q8bert-quantized-8bit-bert | - |
distilbert-a-distilled-version-of-bert | - |
roberta-a-robustly-optimized-bert-pretraining | - |
sentence-bert-sentence-embeddings-using | 0.7703 |
structbert-incorporating-language-structures | 0.924 |
generating-datasets-with-pretrained-language | 0.7782 |
sentence-bert-sentence-embeddings-using | 0.7777 |
ernie-20-a-continual-pre-training-framework | - |
albert-a-lite-bert-for-self-supervised | - |
smart-robust-and-efficient-fine-tuning-for | - |
angle-optimized-text-embeddings | 0.8969 |
trans-encoder-unsupervised-sentence-pair | 0.867 |
ernie-enhanced-language-representation-with | - |
sentence-bert-sentence-embeddings-using | 0.79 |
angle-optimized-text-embeddings | 0.8897 |
trans-encoder-unsupervised-sentence-pair | 0.839 |
fast-effective-and-self-supervised | 0.764 |
exploring-the-limits-of-transfer-learning | 0.85 |
deep-continuous-prompt-for-contrastive-1 | 0.8787 |
exploring-the-limits-of-transfer-learning | 0.921 |
scaling-sentence-embeddings-with-large | 0.8914 |
an-unsupervised-sentence-embedding-method | 0.6921 |
generating-datasets-with-pretrained-language | 0.7651 |
النموذج 27 | 0.7981 |
big-bird-transformers-for-longer-sequences | .878 |
190910351 | - |
exploring-the-limits-of-transfer-learning | - |
llm-int8-8-bit-matrix-multiplication-for | - |
adversarial-self-attention-for-language | 0.892 |
def2vec-extensible-word-embeddings-from | 0.6372 |
informer-transformer-likes-informed-attention | 0.8988 |
fast-effective-and-self-supervised | 0.787 |
mnet-sim-a-multi-layered-semantic-similarity-1 | 0.931 |
spanbert-improving-pre-training-by | - |
trans-encoder-unsupervised-sentence-pair | 0.8616 |
exploring-the-limits-of-transfer-learning | - |
exploring-the-limits-of-transfer-learning | 0.898 |
adversarial-self-attention-for-language | 0.865 |
sentence-bert-sentence-embeddings-using | 0.8479 |
fnet-mixing-tokens-with-fourier-transforms | 0.84 |
rematch-robust-and-efficient-matching-of | 0.6652 |
q-bert-hessian-based-ultra-low-precision | - |
scaling-sentence-embeddings-with-large | 0.8856 |
bert-pre-training-of-deep-bidirectional | 0.865 |
smart-robust-and-efficient-fine-tuning-for | 0.925 |
smart-robust-and-efficient-fine-tuning-for | - |
clear-contrastive-learning-for-sentence | - |
a-statistical-framework-for-low-bitwidth | - |
النموذج 52 | - |
xlnet-generalized-autoregressive-pretraining | - |
angle-optimized-text-embeddings | 0.8897 |
simcse-simple-contrastive-learning-of | 0.867 |
trans-encoder-unsupervised-sentence-pair | 0.8655 |
charformer-fast-character-transformers-via | - |
sentence-bert-sentence-embeddings-using | 0.8445 |
scaling-sentence-embeddings-with-large | 0.8833 |
النموذج 60 | - |
on-the-sentence-embeddings-from-pre-trained | 0.7226 |
trans-encoder-unsupervised-sentence-pair | 0.8465 |
ernie-20-a-continual-pre-training-framework | - |
how-to-train-bert-with-an-academic-budget | - |
deberta-decoding-enhanced-bert-with | - |
entailment-as-few-shot-learner | - |