Semantic Segmentation On Spectralwaste
المقاييس
mIoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | mIoU | Paper Title | Repository |
---|---|---|---|
MiniNet (RGB) | 44.5 | MiniNet: An extremely lightweight convolutional neural network for real-time unsupervised monocular depth estimation | - |
SegFormer (HYPER3) | 53.5 | SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers | |
CMX ( RGB-HYPER3 ) | 56.6 | CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers | |
MiniNet (HYPER) | 52.8 | MiniNet: An extremely lightweight convolutional neural network for real-time unsupervised monocular depth estimation | - |
SegFormer (HYPER) | 54.3 | SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers | |
CMX (RGB-HYPER) | 58.2 | CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers | |
SegFormer (RGB) | 48.4 | SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers | |
MiniNet (HYPER3) | 49.0 | MiniNet: An extremely lightweight convolutional neural network for real-time unsupervised monocular depth estimation | - |
0 of 8 row(s) selected.