Semantic Segmentation On Pascal Voc 2012 Val
المقاييس
mIoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | mIoU |
---|---|
rethinking-atrous-convolution-for-semantic | 82.7% |
reliability-does-matter-an-end-to-end-weakly | 66.3 |
fast-neural-architecture-search-of-compact | 77.1% |
simple-does-it-weakly-supervised-instance-and | - |
dilated-spinenet-for-semantic-segmentation | 85.64% |
fast-neural-architecture-search-of-compact | 77.3% |
weakly-supervised-instance-segmentation-using-1 | 53.4% |
auto-deeplab-hierarchical-neural-architecture | 82.04% |
hyperseg-patch-wise-hypernetwork-for-real | 80.61% |
self-supervised-difference-detection-for-1 | 64.9 |
find-it-if-you-can-end-to-end-adversarial | 62.8% |
fast-neural-architecture-search-of-compact | 78.0% |
pushing-the-limits-of-self-supervised-resnets | 77.9% |
simple-copy-paste-is-a-strong-data | 86.6% |
pushing-the-limits-of-self-supervised-resnets | 75.7% |
the-devil-is-in-the-labels-semantic | 65% |
exploiting-saliency-for-object-segmentation | 55.7% |
pushing-the-limits-of-self-supervised-resnets | 77.3% |
revisiting-unreasonable-effectiveness-of-data | 76.5% |
text-image-alignment-for-diffusion-based | 87.11% |
large-kernel-matters-improve-semantic | 81.0% |
encoder-decoder-with-atrous-separable | - |
exfuse-enhancing-feature-fusion-for-semantic | 85.8% |
rethinking-pre-training-and-self-training | 90.0% |
learning-a-discriminative-feature-network-for | 80.60% |
deeplab-semantic-image-segmentation-with-deep | 77.69% |
res2net-a-new-multi-scale-backbone | 79.3% |
dicenet-dimension-wise-convolutions-for | 66.5% |
waterfall-atrous-spatial-pooling-architecture | 80.41% |