HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
التمييز الدلالي
Semantic Segmentation On Nyu Depth V2
Semantic Segmentation On Nyu Depth V2
المقاييس
Mean IoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Mean IoU
Paper Title
OmniVec2
63.6
OmniVec2 - A Novel Transformer based Network for Large Scale Multimodal and Multitask Learning
DiffusionMMS (DAT++-S)
61.5
Diffusion-based RGB-D Semantic Segmentation with Deformable Attention Transformer
GeminiFusion (Swin-Large)
60.9
GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer
OmniVec
60.8
OmniVec: Learning robust representations with cross modal sharing
GeminiFusion (Swin-Large)
60.2
GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer
DPLNet
59.3
Efficient Multimodal Semantic Segmentation via Dual-Prompt Learning
EMSANet (2x ResNet-34 NBt1D, PanopticNDT version, finetuned)
59.02
PanopticNDT: Efficient and Robust Panoptic Mapping
SwinMTL
58.14%
SwinMTL: A Shared Architecture for Simultaneous Depth Estimation and Semantic Segmentation from Monocular Camera Images
PolyMaX(ConvNeXt-L)
58.08%
PolyMaX: General Dense Prediction with Mask Transformer
HSPFormer(PVT v2-B4)
57.8%
HSPFormer: Hierarchical Spatial Perception Transformer for Semantic Segmentation
GeminiFusion (MiT-B5)
57.7
GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer
DFormer-L
57.2%
DFormer: Rethinking RGBD Representation Learning for Semantic Segmentation
CMNeXt (B4)
56.9%
Delivering Arbitrary-Modal Semantic Segmentation
CMX (B5)
56.9%
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
GeminiFusion (MiT-B3)
56.8
GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer
OMNIVORE (Swin-L, finetuned)
56.8%
Omnivore: A Single Model for Many Visual Modalities
CMX (B4)
56.3%
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
MultiMAE (ViT-B)
56.0%
MultiMAE: Multi-modal Multi-task Masked Autoencoders
SMMCL (SegNeXt-B)
55.8%
Understanding Dark Scenes by Contrasting Multi-Modal Observations
DFormer-B
55.6%
DFormer: Rethinking RGBD Representation Learning for Semantic Segmentation
0 of 116 row(s) selected.
Previous
Next
Semantic Segmentation On Nyu Depth V2 | SOTA | HyperAI