HyperAI
HyperAI
الرئيسية
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
البحث في الموقع...
⌘
K
الرئيسية
SOTA
التمييز الدلالي
Semantic Segmentation On Isaid
Semantic Segmentation On Isaid
المقاييس
mIoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
mIoU
Paper Title
Repository
ViTAE-B + RVSA-UperNet
64.49
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
FarSeg@ResNet-50
63.71
Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery
AerialFormer-S
68.4
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
SegNeXt-L
70.3
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation
FarSeg++@Swin-T
66.3
FarSeg++: Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery
-
RSP-ResNet-50-UperNet
61.6
An Empirical Study of Remote Sensing Pretraining
SegNeXt-S
68.8
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation
DeepLabV3 with R-50
67.03
Resolution-Aware Design of Atrous Rates for Semantic Segmentation Networks
-
SegNeXt-B
69.9
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation
SegNeXt-T
68.3
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation
ViT-B + RVSA-UperNet
63.85
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
IMP-ViTAEv2-S-UperNet
65.3
An Empirical Study of Remote Sensing Pretraining
FarSeg++@MiT-B2
67.9
FarSeg++: Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery
-
FarSeg++@ResNet-50
67.6
FarSeg++: Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery
-
FactSeg@ResNet-50
64.79
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery
-
RSP-Swin-T-UperNet
64.1
An Empirical Study of Remote Sensing Pretraining
AerialFormer-T
67.5
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
AerialFormer-B
69.3
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
RSP-ViTAEv2-S-UperNet
64.3
An Empirical Study of Remote Sensing Pretraining
0 of 19 row(s) selected.
Previous
Next