HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
التمييز الدلالي
Semantic Segmentation On Imagenet S
Semantic Segmentation On Imagenet S
المقاييس
mIoU (test)
mIoU (val)
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
mIoU (test)
mIoU (val)
Paper Title
TEC (ViT-B/16, 224x224, SSL+FT, mmseg)
62.5
63.2
Towards Sustainable Self-supervised Learning
SERE (ViT-B/16, 100ep, 224x224, SSL+FT)
63.3
63.0
SERE: Exploring Feature Self-relation for Self-supervised Transformer
TEC (ViT-B/16, 224x224, SSL+FT)
-
62.0
Towards Sustainable Self-supervised Learning
MAE (ViT-B/16, 224x224, SSL+FT, mmseg)
61.2
61.6
Masked Autoencoders Are Scalable Vision Learners
MAE (ViT-B/16, 224x224, SSL+FT)
60.2
61.0
Masked Autoencoders Are Scalable Vision Learners
SERE (ViT-S/16, 100ep, 224x224, SSL+FT, mmseg)
59.0
59.4
SERE: Exploring Feature Self-relation for Self-supervised Transformer
SERE (ViT-S/16, 100ep, 224x224, SSL+FT)
57.8
58.9
SERE: Exploring Feature Self-relation for Self-supervised Transformer
RF-ConvNext-Tiny (rfmerge, P4, 224x224, SUP)
51.1
51.3
RF-Next: Efficient Receptive Field Search for Convolutional Neural Networks
RF-ConvNext-Tiny (rfmultiple, P4, 224x224, SUP)
50.5
50.8
RF-Next: Efficient Receptive Field Search for Convolutional Neural Networks
RF-ConvNext-Tiny (rfsingle, P4, 224x224, SUP)
50.5
50.7
RF-Next: Efficient Receptive Field Search for Convolutional Neural Networks
ConvNext-Tiny (P4, 224x224, SUP)
48.8
48.7
A ConvNet for the 2020s
SERE (ViT-B/16, 100ep, 224x224, SSL)
48.2
48.6
SERE: Exploring Feature Self-relation for Self-supervised Transformer
TEC (ViT-B/16, 224x224, SSL, mmseg)
46.0
46.1
Towards Sustainable Self-supervised Learning
TEC (ViT-B/16, 224x224, SSL)
-
42.9
Towards Sustainable Self-supervised Learning
SERE (ViT-S/16, 100ep, 224x224, SSL)
40.2
41.0
SERE: Exploring Feature Self-relation for Self-supervised Transformer
SERE (ViT-S/16, 100ep, 224x224, SSL, mmseg)
40.5
41.0
SERE: Exploring Feature Self-relation for Self-supervised Transformer
MAE (ViT-B/16, 224x224, SSL, mmseg)
40.3
40.0
Masked Autoencoders Are Scalable Vision Learners
MAE (ViT-B/16, 224x224, SSL)
37.0
38.3
Masked Autoencoders Are Scalable Vision Learners
PASS (ResNet-50 D16, 224x224, LUSS)
20.8
21.6
Large-scale Unsupervised Semantic Segmentation
PASS (ResNet-50 D32, 224x224, LUSS)
20.3
21.0
Large-scale Unsupervised Semantic Segmentation
0 of 20 row(s) selected.
Previous
Next
Semantic Segmentation On Imagenet S | SOTA | HyperAI