HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
التمييز الدلالي
Semantic Segmentation On Coco Stuff Test
Semantic Segmentation On Coco Stuff Test
المقاييس
mIoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
mIoU
Paper Title
Repository
CAA (ResNet-101)
41.2%
Channelized Axial Attention for Semantic Segmentation -- Considering Channel Relation within Spatial Attention for Semantic Segmentation
SenFormer (Swin-L)
50.1%
Efficient Self-Ensemble for Semantic Segmentation
DRAN(ResNet-101)
41.2%
Scene Segmentation with Dual Relation-aware Attention Network
CCL (ResNet-101)
35.7%
Context Contrasted Feature and Gated Multi-Scale Aggregation for Scene Segmentation
OCR (ResNet-101)
39.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
DAG-RNN (VGG-16)
31.2%
DAG-Recurrent Neural Networks For Scene Labeling
-
FCN (VGG-16)
22.7%
Fully Convolutional Networks for Semantic Segmentation
OCR (HRNetV2-W48)
40.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
VPNeXt
53.7
VPNeXt -- Rethinking Dense Decoding for Plain Vision Transformer
-
EVA
53.4%
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
SegViT (ours)
50.3%
SegViT: Semantic Segmentation with Plain Vision Transformers
EMANet
39.9%
Expectation-Maximization Attention Networks for Semantic Segmentation
RSSeg-ViT-L
52.0%
Representation Separation for Semantic Segmentation with Vision Transformers
-
DANet (ResNet-101)
39.7%
Dual Attention Network for Scene Segmentation
SVCNet (ResNet-101)
39.6%
Semantic Correlation Promoted Shape-Variant Context for Segmentation
RSSeg-ViT-L (BEiT pretrain)
52.6%
Representation Separation for Semantic Segmentation with Vision Transformers
-
RefineNet (ResNet-101)
33.6%
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
CAA (Efficientnet-B7)
45.4%
Channelized Axial Attention for Semantic Segmentation -- Considering Channel Relation within Spatial Attention for Semantic Segmentation
HRNetV2 + OCR + RMI (PaddleClas pretrained)
45.2%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
Asymmetric ALNN
37.2%
Asymmetric Non-local Neural Networks for Semantic Segmentation
0 of 20 row(s) selected.
Previous
Next
Semantic Segmentation On Coco Stuff Test | SOTA | HyperAI