Semantic Segmentation On Cityscapes Val
المقاييس
mIoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | mIoU |
---|---|
exploring-semantic-segmentation-on-the-dct | 61.6 |
improve-vision-transformers-training-by | 83.6% |
efficient-visual-pretraining-with-contrastive | 77.0% |
streaming-multiscale-deep-equilibrium-models | 78.2 |
rethinking-semantic-segmentation-from-a | 82.15 |
soft-labelling-for-semantic-segmentation | 84.8 |
fasterseg-searching-for-faster-real-time-1 | 73.1% |
190807919 | 80.2 |
streaming-multiscale-deep-equilibrium-models | 57.9 |
deep-residual-learning-for-image-recognition | 75.7 |
vpnext-rethinking-dense-decoding-for-plain | 84.4 |
gated-scnn-gated-shape-cnns-for-semantic | 73.0% |
understanding-the-robustness-in-vision | 82.3 |
efficientvit-enhanced-linear-attention-for | 83.2 |
trans4trans-efficient-transformer-for-1 | 81.54% |
aerial-pass-panoramic-annular-scene | 72.8% |
dsnet-a-novel-way-to-use-atrous-convolutions | 80.4 |
repvgg-making-vgg-style-convnets-great-again | 80.57% |
internimage-exploring-large-scale-vision | 87 |
vision-transformer-adapter-for-dense | 85.8 |
template-based-automatic-search-of-compact | 68.1% |
wavemix-lite-a-resource-efficient-neural | 82.60 |
multiscale-deep-equilibrium-models | 80.3% |
csfnet-a-cosine-similarity-fusion-network-for | 76.36 |
contextnet-exploring-context-and-detail-for | 65.9% |
unet-a-nested-u-net-architecture-for-medical | 75.5 |
oneformer-one-transformer-to-rule-universal | 84.6 |
swinmtl-a-shared-architecture-for | 76.41 |
oneformer-one-transformer-to-rule-universal | 84.4 |
eeea-net-an-early-exit-evolutionary-neural | 76.8 |
polarized-self-attention-towards-high-quality-1 | 86.93 |
segformer-simple-and-efficient-design-for | 84.0 |
fully-attentional-networks-with-self-emerging-1 | 82.8 |
encoder-decoder-with-atrous-separable | 79.6 |
mrfp-learning-generalizable-semantic | 42.4 |
hyperbolic-active-learning-for-semantic | 77.8 |
masked-attention-mask-transformer-for | 84.3 |
النموذج 38 | 81.5 |
wavemix-lite-a-resource-efficient-neural | 82.7 |
conditional-boundary-loss-for-semantic | 83.4 |
semask-semantically-masked-transformers-for-1 | 80.39 |
hierarchical-multi-scale-attention-for | 86.3 |
pixel-wise-anomaly-detection-in-complex | 83.5 |
segformer-simple-and-efficient-design-for | - |
harnessing-diffusion-models-for-visual | 87.1 |
squeezenas-fast-neural-architecture-search | 68.0% |
internimage-exploring-large-scale-vision | 86.4 |
volo-vision-outlooker-for-visual-recognition | 84.3 |
depth-anything-unleashing-the-power-of-large | 86.2 |
streaming-multiscale-deep-equilibrium-models | 45.5 |
auto-deeplab-hierarchical-neural-architecture | 80.33% |
pushing-the-limits-of-self-supervised-resnets | 74.6 |
sequential-ensembling-for-semantic | 84.8 |
template-based-automatic-search-of-compact | 69.5% |
multiscale-deep-equilibrium-models | 77.8% |
waterfall-atrous-spatial-pooling-architecture | 74% |
gated-scnn-gated-shape-cnns-for-semantic | 74.7% |
panoptic-deeplab-a-simple-strong-and-fast | 81.5% |
dilated-neighborhood-attention-transformer | 84.5 |
semask-semantically-masked-transformers-for-1 | 84.98 |
streaming-multiscale-deep-equilibrium-models | 71.5 |
squeezenas-fast-neural-architecture-search | 73.6% |
cmx-cross-modal-fusion-for-rgb-x-semantic | 82.6 |
squeezenas-fast-neural-architecture-search | 75.2% |
ds-pass-detail-sensitive-panoramic-annular | 72.1% |
dilated-spinenet-for-semantic-segmentation | 83.04% |
real-time-fusion-network-for-rgb-d-semantic | 72.5% |
sernet-former-semantic-segmentation-by | 87.35 |
rethinking-decoders-for-transformer-based | 78.8 |
oneformer-one-transformer-to-rule-universal | 85.8 |
mrfp-learning-generalizable-semantic | 34.66 |
pushing-the-limits-of-self-supervised-resnets | 75.2 |
rethinking-decoders-for-transformer-based | 81.0 |
object-contextual-representations-for | 83.6 |
erfnet-efficient-residual-factorized-convnet | 72.1% |
wavemix-lite-a-resource-efficient-neural-1 | 76.79 |
pyramid-scene-parsing-network | 79.7 |
beyond-self-attention-external-attention | 81.7% |
hrvit-multi-scale-high-resolution-vision | 82.81% |
bending-reality-distortion-aware-transformers | 81.1% |
repmlpnet-hierarchical-vision-mlp-with-re | 76.27 |
dsnet-a-novel-way-to-use-atrous-convolutions | 82.0 |
standardized-max-logits-a-simple-yet | 80.33 |
ddp-diffusion-model-for-dense-visual | 83.9 |
fast-scnn-fast-semantic-segmentation-network | 69.19 |
dicenet-dimension-wise-convolutions-for | 63.4 |
cmx-cross-modal-fusion-for-rgb-x-semantic | 81.6 |
pointrend-image-segmentation-as-rendering | 78.6 |
bending-reality-distortion-aware-transformers | 79.1% |
object-contextual-representations-for | 80.6 |
rethinking-atrous-convolution-for-semantic | 78.5% |
incorporating-luminance-depth-and-color | 68.48% |
csfnet-a-cosine-similarity-fusion-network-for | 74.73 |
190807919 | 81.1 |
resnest-split-attention-networks | 82.7 |
hrvit-multi-scale-high-resolution-vision | 83.16% |
hrvit-multi-scale-high-resolution-vision | 81.63% |