Semantic Segmentation On Camvid
المقاييس
Mean IoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Mean IoU |
---|---|
rtformer-efficient-design-for-real-time | 82.5 |
efficient-dense-modules-of-asymmetric | 66.4 |
dense-decoder-shortcut-connections-for-single | 70.9 |
efficient-road-lane-marking-detection-with | 63.5 |
dsnet-a-novel-way-to-use-atrous-convolutions | 83.32 |
efficient-semantic-video-segmentation-with | 76.3 |
template-based-automatic-search-of-compact | 63.2% |
improving-semantic-segmentation-via-video | 81.7% |
deep-dual-resolution-networks-for-real-time | 80.6% |
semantic-image-segmentation-with-deep | 61.6% |
pidnet-a-real-time-semantic-segmentation | 82.0% |
deep-spatio-temporal-random-fields-for | 75.2 |
template-based-automatic-search-of-compact | 63.9% |
segnet-a-deep-convolutional-encoder-decoder | 46.4% |
dfanet-deep-feature-aggregation-for-real-time | 64.7% |
multi-scale-context-aggregation-by-dilated | 65.3% |
the-devil-is-in-the-labels-semantic | 83.7 |
sernet-former-semantic-segmentation-by | 84.62 |
the-one-hundred-layers-tiramisu-fully | 66.9% |
bisenet-bilateral-segmentation-network-for | 68.7% |
reseg-a-recurrent-neural-network-based-model | 58.8% |