HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
اكتشاف الكائنات البارزة باستخدام صور RGB-D
Rgb D Salient Object Detection On Sip
Rgb D Salient Object Detection On Sip
المقاييس
Average MAE
S-Measure
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Average MAE
S-Measure
Paper Title
Repository
PGAR
0.059
87.5
Progressively Guided Alternate Refinement Network for RGB-D Salient Object Detection
-
VST
0.040
90.4
Visual Saliency Transformer
-
UCNet-CVAE
0.045
88.3
Uncertainty Inspired RGB-D Saliency Detection
-
DFormer-L
0.032
91.5
DFormer: Rethinking RGBD Representation Learning for Semantic Segmentation
-
UCNet-ABP
0.049
87.6
Uncertainty Inspired RGB-D Saliency Detection
-
BiANet
0.052
88.3
Bilateral Attention Network for RGB-D Salient Object Detection
-
SPSN
0.042
89.2
SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object Detection
-
UC-Net
0.051
87.5
UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders
-
CPFP
0.064
85.0
Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection
D3Net
0.063
86.0
Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks
-
BTS-Net
0.044
89.6
BTS-Net: Bi-directional Transfer-and-Selection Network For RGB-D Salient Object Detection
-
DDNet
0.043
-
Densely Deformable Efficient Salient Object Detection Network
-
BBS-Net
0.055
87.9
Bifurcated backbone strategy for RGB-D salient object detection
-
JL-DCF*
0.046
89.2
Siamese Network for RGB-D Salient Object Detection and Beyond
-
JL-DCF
0.051
87.9
JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection
-
CoLANet
0.042
89.5
CoLA: Conditional Dropout and Language-driven Robust Dual-modal Salient Object Detection
-
0 of 16 row(s) selected.
Previous
Next
Rgb D Salient Object Detection On Sip | SOTA | HyperAI