HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
الإجابة على الأسئلة
Question Answering On Trecqa
Question Answering On Trecqa
المقاييس
MAP
MRR
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
MAP
MRR
Paper Title
Repository
Contextual DeBERTa-V3-Large + SSP
0.919
0.945
Context-Aware Transformer Pre-Training for Answer Sentence Selection
-
CNN
0.711
0.785
Deep Learning for Answer Sentence Selection
NLP-Capsule
0.7773
0.7416
Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications
DeBERTa-V3-Large + SSP
0.923
0.946
Pre-training Transformer Models with Sentence-Level Objectives for Answer Sentence Selection
-
aNMM
0.750
0.811
aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model
HyperQA
0.770
0.825
Hyperbolic Representation Learning for Fast and Efficient Neural Question Answering
RoBERTa-Base Joint + MSPP
0.911
0.952
Paragraph-based Transformer Pre-training for Multi-Sentence Inference
RoBERTa-Base + PSD
0.903
0.951
Pre-training Transformer Models with Sentence-Level Objectives for Answer Sentence Selection
-
PWIN
0.7588
0.8219
-
-
TANDA DeBERTa-V3-Large + ALL
0.954
0.984
Structural Self-Supervised Objectives for Transformers
-
Comp-Clip + LM + LC
0.868
0.928
A Compare-Aggregate Model with Latent Clustering for Answer Selection
-
TANDA-RoBERTa (ASNQ, TREC-QA)
0.943
0.974
TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection
-
RLAS-BIABC
0.913
0.998
RLAS-BIABC: A Reinforcement Learning-Based Answer Selection Using the BERT Model Boosted by an Improved ABC Algorithm
-
0 of 13 row(s) selected.
Previous
Next
Question Answering On Trecqa | SOTA | HyperAI