HyperAI

Question Answering On Squad11

المقاييس

EM
F1

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجEMF1
stochastic-answer-networks-for-machine79.60886.496
النموذج 271.90881.023
harvesting-and-refining-question-answer-pairs55.82765.467
النموذج 468.33177.783
information-theoretic-representation77.785.8
adaptation-of-deep-bidirectional-multilingual-84.6
النموذج 784.92691.932
النموذج 890.62295.719
النموذج 985.31491.756
phase-conductor-on-multi-layered-attentions74.40582.742
النموذج 1178.66485.780
a-large-batch-optimizer-reality-check-91.58
fusionnet-fusing-via-fully-aware-attention75.96883.900
النموذج 1484.40290.561
dyrex-dynamic-query-representation-for-91.01
النموذج 160.0000.000
النموذج 1774.12182.342
contextualized-word-representations-for75.78983.261
harvesting-and-refining-question-answer-pairs61.14571.389
memen-multi-layer-embedding-with-memory78.23485.344
النموذج 2184.32891.281
end-to-end-answer-chunk-extraction-and62.49970.956
النموذج 2381.00387.432
multi-perspective-context-matching-for73.76581.257
النموذج 2555.82765.467
النموذج 2686.45892.645
exploring-machine-reading-comprehension-with76.12583.538
النموذج 2879.99686.711
stochastic-answer-networks-for-machine76.82884.396
النموذج 3070.98579.939
النموذج 3175.03483.405
النموذج 3266.52775.787
bert-pre-training-of-deep-bidirectional87.493.2
النموذج 3475.26582.769
النموذج 3571.01679.835
information-theoretic-representation81.588.5
making-neural-qa-as-simple-as-possible-but70.84978.857
النموذج 3869.60078.236
النموذج 3959.05869.436
النموذج 4076.85984.739
النموذج 4172.48580.550
multi-perspective-context-matching-for70.38778.784
النموذج 4385.35691.202
bert-pre-training-of-deep-bidirectional87.43393.160
textbox-2-0-a-text-generation-library-with-93.04
learning-to-compute-word-embeddings-on-the62.89772.016
النموذج 4785.12591.623
النموذج 4873.63981.931
simple-and-effective-multi-paragraph-reading72.13981.048
النموذج 5061.14571.389
dcn-mixed-objective-and-deep-residual74.86682.806
machine-comprehension-using-match-lstm-and67.90177.022
machine-comprehension-using-match-lstm-and64.74473.743
النموذج 5480.61587.311
fusionnet-fusing-via-fully-aware-attention78.97886.016
النموذج 5679.19986.590
النموذج 5781.79088.163
words-or-characters-fine-grained-gating-for62.44673.327
النموذج 5983.42689.218
efficientqa-a-roberta-based-phrase-indexed74.983.1
النموذج 6147.34156.436
النموذج 620.0000.000
النموذج 6380.02787.288
النموذج 6452.54462.780
learning-to-compute-word-embeddings-on-the62.60471.968
النموذج 6679.69286.727
deep-contextualized-word-representations81.00387.432
spanbert-improving-pre-training-by88.894.6
smarnet-teaching-machines-to-read-and71.41580.160
النموذج 7075.82183.843
النموذج 7189.70994.859
النموذج 7282.68189.379
النموذج 7379.08386.288
النموذج 7471.69880.462
qanet-combining-local-convolution-with-global76.284.6
making-neural-qa-as-simple-as-possible-but68.43677.070
reasonet-learning-to-stop-reading-in-machine70.55579.364
النموذج 7869.44378.358
النموذج 790.0000.000
النموذج 8071.89879.989
structural-embedding-of-syntactic-trees-for74.09081.761
النموذج 8267.61877.151
النموذج 8383.98289.796
النموذج 8480.43687.021
النموذج 8572.75881.001
النموذج 860.0000.000
النموذج 8782.48289.281
النموذج 8889.64694.930
memen-multi-layer-embedding-with-memory75.37082.658
النموذج 9077.23784.466
النموذج 9185.94492.425
النموذج 9278.08785.348
النموذج 9388.91294.584
bidirectional-attention-flow-for-machine67.97477.323
النموذج 9583.80490.429
النموذج 9681.58088.948
النموذج 9768.13277.569
النموذج 9874.48982.815
النموذج 9989.85694.903
النموذج 10079.90186.536
النموذج 10164.43973.921
النموذج 10286.52192.617
النموذج 10377.64684.905
النموذج 10478.66485.780
النموذج 10575.98983.475
reading-wikipedia-to-answer-open-domain70.73379.353
structural-embedding-of-syntactic-trees-for68.47877.971
النموذج 10878.32885.682
النموذج 10964.93274.594
exploring-question-understanding-and73.01081.517
النموذج 11188.91294.584
النموذج 11278.17185.543
النموذج 11379.08386.288
النموذج 11463.30673.463
النموذج 1150.0006.907
bidirectional-attention-flow-for-machine73.74481.525
النموذج 11778.49685.469
exploring-question-understanding-and70.60779.821
النموذج 11979.03186.006
a-multi-stage-memory-augmented-neural-network79.69286.727
deep-contextualized-word-representations78.5885.833
النموذج 12285.94492.425
النموذج 12373.30381.754
النموذج 12482.06288.947
النموذج 12565.16374.555
النموذج 12680.42686.912
النموذج 12753.69864.036
النموذج 12876.24084.599
phase-conductor-on-multi-layered-attentions73.24081.933
xlnet-generalized-autoregressive-pretraining89.89895.080
bert-pre-training-of-deep-bidirectional85.08391.835
النموذج 13281.40188.122
النموذج 13372.60081.011
النموذج 13478.32885.682
النموذج 13581.30788.909
gated-self-matching-networks-for-reading76.46184.265
النموذج 13767.54476.429
النموذج 13877.34284.925
dynamic-coattention-networks-for-question71.62580.383
النموذج 14080.16486.721
luke-deep-contextualized-entity90.20295.379
النموذج 14266.51676.349
luke-deep-contextualized-entity-95.4
reinforced-mnemonic-reader-for-machine82.28388.533
النموذج 14588.65094.393
النموذج 14676.46184.265
النموذج 1470.0000.000
النموذج 14877.84585.297
النموذج 14980.72087.758
النموذج 15075.22382.716
النموذج 15190.20295.379
النموذج 15276.77584.491
النموذج 15383.46890.133
النموذج 15444.21554.723
machine-comprehension-using-match-lstm-and60.47470.695
النموذج 15679.08386.450
a-fully-attention-based-information-retriever67.74477.605
dynamic-coattention-networks-for-question66.23375.896
النموذج 15975.92683.305
النموذج 16085.43091.976
النموذج 16176.14683.991
reinforced-mnemonic-reader-for-machine79.54586.654
النموذج 16367.50276.786
reinforced-mnemonic-reader-for-machine70.99580.146
reasonet-learning-to-stop-reading-in-machine75.03482.552
النموذج 16681.49687.557
النموذج 16781.04587.999
contextualized-word-representations-for77.58384.163
reinforced-mnemonic-reader-for-machine74.26882.371
النموذج 17080.66788.169
النموذج 17174.08081.665
النموذج 17271.37379.725
النموذج 17378.40185.724
النموذج 17487.46593.294
النموذج 17578.65386.663
النموذج 17672.59081.415
luke-deep-contextualized-entity90.2-
النموذج 17812.27313.211
النموذج 17974.60482.501
phase-conductor-on-multi-layered-attentions76.99684.630
النموذج 18178.58085.833
structural-embedding-of-syntactic-trees-for73.72381.530
النموذج 18382.84988.764
النموذج 18489.89895.080
bert-pre-training-of-deep-bidirectional-91.8
ruminating-reader-reasoning-with-gated-multi70.63979.456
structural-embedding-of-syntactic-trees-for68.16377.527
النموذج 18882.47189.306
memen-multi-layer-embedding-with-memory78.23485.344
النموذج 19077.57384.858
learning-to-compute-word-embeddings-on-the64.08373.056
linkbert-pretraining-language-models-with87.4592.7
النموذج 19378.22385.535
النموذج 19488.83994.635
النموذج 19577.09083.931
النموذج 19684.97892.019
learned-in-translation-contextualized-word71.379.9
النموذج 19879.85988.263
النموذج 19982.13688.126
النموذج 20086.94092.641
النموذج 20179.59787.374
learning-recurrent-span-representations-for70.84978.741
simple-recurrent-units-for-highly71.480.2
النموذج 20483.93090.613
النموذج 20580.43686.912
النموذج 20682.65088.493
النموذج 20779.08386.288
dcn-mixed-objective-and-deep-residual78.85285.996
النموذج 20980.48987.454
النموذج 21082.44088.607
النموذج 21185.33591.807
النموذج 21252.53362.757
machine-comprehension-using-match-lstm-and54.50567.748