HyperAI

Question Answering On Medqa Usmle

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
large-language-models-encode-clinical67.6
meditron-70b-scaling-medical-pretraining-for70.2
galactica-a-large-language-model-for-science-144.4
capabilities-of-gemini-models-in-medicine91.1
variational-open-domain-question-answering55.0
shakti-a-2-5-billion-parameter-small-language60.3
towards-expert-level-medical-question79.7
grapeqa-graph-augmentation-and-pruning-to39.51
linkbert-pretraining-language-models-with40.0
deep-bidirectional-language-knowledge-graph47.5
meditron-70b-scaling-medical-pretraining-for59.2
towards-expert-level-medical-question83.7
can-generalist-foundation-models-outcompete90.2
medmobile-a-mobile-sized-language-model-with75.7
towards-expert-level-medical-question85.4
large-language-models-encode-clinical45.1
galactica-a-large-language-model-for-science-122.8
small-language-models-learn-enhanced70.6
large-language-models-encode-clinical50.3
biobert-a-pre-trained-biomedical-language36.7
biomedgpt-open-multimodal-generative-pre50.4
galactica-a-large-language-model-for-science-123.3
can-large-language-models-reason-about60.2
small-language-models-learn-enhanced74.3
meditron-70b-scaling-medical-pretraining-for61.5
large-language-models-encode-clinical33.3
biobert-a-pre-trained-biomedical-language34.1