HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
الإجابة على الأسئلة
Question Answering On Drop Test
Question Answering On Drop Test
المقاييس
F1
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
F1
Paper Title
Repository
QDGAT (ensemble)
88.38
Question Directed Graph Attention Network for Numerical Reasoning over Text
-
PaLM 2 (few-shot)
85.0
PaLM 2 Technical Report
GPT-3 175B (few-shot, k=32)
36.5
Language Models are Few-Shot Learners
GPT-4 (few-shot, k=3)
80.9
GPT-4 Technical Report
NeRd
81.71
Neural Symbolic Reader: Scalable Integration of Distributed and Symbolic Representations for Reading Comprehension
-
NumNet
67.97
NumNet: Machine Reading Comprehension with Numerical Reasoning
Orca 2-7B
60.26
Orca 2: Teaching Small Language Models How to Reason
-
GPT 3.5 (few-shot, k=3)
64.1
GPT-4 Technical Report
Orca 2-13B
57.97
Orca 2: Teaching Small Language Models How to Reason
-
POET
87.6
Reasoning Like Program Executors
BERT
32.7
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
BERT+Calculator (ensemble)
81.78
Giving BERT a Calculator: Finding Operations and Arguments with Reading Comprehension
-
NAQA Net
47.01
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
GenBERT (+ND+TD)
72.4
Injecting Numerical Reasoning Skills into Language Models
MTMSN Large
79.88
A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning
TASE-BERT
80.7
A Simple and Effective Model for Answering Multi-span Questions
0 of 16 row(s) selected.
Previous
Next
Question Answering On Drop Test | SOTA | HyperAI