HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Out Of Distribution Detection
Out Of Distribution Detection On Imagenet 1K 8
Out Of Distribution Detection On Imagenet 1K 8
المقاييس
AUROC
FPR95
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
AUROC
FPR95
Paper Title
Repository
RankFeat (ResNetv2-101)
94.07
29.27
RankFeat: Rank-1 Feature Removal for Out-of-distribution Detection
NPOS
90.44
43.77
Non-Parametric Outlier Synthesis
SHE
-
54.19
Out-of-Distribution Detection based on In-Distribution Data Patterns Memorization with Modern Hopfield Energy
DICE + ReAct (ResNet-50)
93.94
25.45
DICE: Leveraging Sparsification for Out-of-Distribution Detection
ReAct (ResNet-50)
88.16
47.69
ReAct: Out-of-distribution Detection With Rectified Activations
KNN (ResNet-50 SupCon)
88.40
48.91
Out-of-Distribution Detection with Deep Nearest Neighbors
MOS (BiT-S-R101x1)
92.01
40.63
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
MCM (CLIP-L)
94.14
29.00
Delving into Out-of-Distribution Detection with Vision-Language Representations
NNGuide (RegNet)
94.43
21.58
Nearest Neighbor Guidance for Out-of-Distribution Detection
ODIN+UMAP (ResNet-50)
86.92
49.69
Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability
MCM (CLIP-B)
92.57
37.59
Delving into Out-of-Distribution Detection with Vision-Language Representations
DICE (ResNet-50)
90.83
35.15
DICE: Leveraging Sparsification for Out-of-Distribution Detection
ASH-S (ResNet-50)
94.02
27.98
Extremely Simple Activation Shaping for Out-of-Distribution Detection
MOOD
89.8
-
Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is All You Need
SCALE (ResNet50)
95.02
23.27
Scaling for Training Time and Post-hoc Out-of-distribution Detection Enhancement
-
LINe (ResNet50)
95.26
19.48
LINe: Out-of-Distribution Detection by Leveraging Important Neurons
GradNorm (ResNetv2-101)
-
46.48
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
KNN (ResNet-50)
80.10
69.53
Out-of-Distribution Detection with Deep Nearest Neighbors
DOE
76.26
80.94
Out-of-distribution Detection with Implicit Outlier Transformation
DML
-
57.40
Decoupling MaxLogit for Out-of-Distribution Detection
-
0 of 21 row(s) selected.
Previous
Next