HyperAI

Node Classification On Wisconsin

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
heterophilous-distribution-propagation-for88.82 ± 3.40
beyond-low-frequency-information-in-graph79.61 ± 1.58
neural-sheaf-diffusion-a-topological89.21 ± 3.84
graphrare-reinforcement-learning-enhanced90.00±2.97
revisiting-heterophily-for-graph-neural88.43 ± 2.39
refining-latent-homophilic-structures-over88.32±2.3
generalizing-graph-neural-networks-beyond84.31 ± 3.70
finding-global-homophily-in-graph-neural87.06±3.53
finding-global-homophily-in-graph-neural88.04±3.22
sign-is-not-a-remedy-multiset-to-multiset89.01 ± 4.1
non-local-graph-neural-networks56.9 ± 7.3
revisiting-heterophily-for-graph-neural86.47 ± 3.77
gcnh-a-simple-method-for-representation-
diffusion-jump-gnns-homophiliation-via-
revisiting-heterophily-for-graph-neural86.47 ± 3.77
transfer-entropy-in-graph-convolutional87.45 ± 3.70
geom-gcn-geometric-graph-convolutional-158.24
improving-graph-neural-networks-with-simple88.43±3.22
unigap-a-universal-and-adaptive-graph87.73 ± 4.8
large-scale-learning-on-non-homophilous75.49 ± 5.72
learn-from-heterophily-heterophilous85.88 ± 3.18
cat-a-causally-graph-attention-network-for85.6±2.1
understanding-over-squashing-and-bottlenecks-155.51±0.27
label-wise-message-passing-graph-neural86.9±2.2
beyond-low-frequency-information-in-graph86.98 ± 3.78
diffwire-inductive-graph-rewiring-via-the79.05
revisiting-heterophily-for-graph-neural87.45 ± 3.74
graph-neural-reaction-diffusion-models93.72 ± 4.59
revisiting-heterophily-for-graph-neural88.04 ± 3.66
neural-sheaf-diffusion-a-topological88.63 ± 2.75
revisiting-heterophily-for-graph-neural88.43 ± 3.22
the-heterophilic-snowflake-hypothesis88.77
revisiting-heterophily-for-graph-neural88.43 ± 3.66
mamba-based-graph-convolutional-networks86.27±2.16
sheaf-neural-networks-with-connection88.73±4.47
improving-graph-neural-networks-by-learning87.84±3.70
beyond-homophily-with-graph-echo-state-183.3±3.8
neural-sheaf-diffusion-a-topological89.41 ± 4.74
higher-order-graph-convolutional-network-with94.99±0.65
non-local-graph-neural-networks87.3 ± 4.3
tree-decomposed-graph-neural-network85.57 ± 3.78 (0, 3-5)
revisiting-heterophily-for-graph-neural88.24 ± 3.16
geom-gcn-geometric-graph-convolutional-164.12
ordered-gnn-ordering-message-passing-to-deal88.04±3.63
breaking-the-entanglement-of-homophily-and81.6±3.5
self-attention-dual-embedding-for-graphs-with88.63±4.54
deltagnn-graph-neural-network-with80.00±0.88
universal-deep-gnns-rethinking-residual87.64±3.74
fdgatii-fast-dynamic-graph-attention-with86.2745
graph-neural-aggregation-diffusion-with87.7±3.7
simple-truncated-svd-based-model-for-node86.67±4.22
cn-motifs-perceptive-graph-neural-networks86.63 ± 3.57
joint-adaptive-feature-smoothing-and-topology82.55 ± 6.23
transitivity-preserving-graph-representation81.6 ±8.24
make-heterophily-graphs-better-fit-gnn-a85.01±5.51
geom-gcn-geometric-graph-convolutional-156.67
non-local-graph-neural-networks60.2 ± 5.3
simple-and-deep-graph-convolutional-networks-180.39 ± 3.40
diffwire-inductive-graph-rewiring-via-the69.25
two-sides-of-the-same-coin-heterophily-and86.86 ± 3.29
unig-encoder-a-universal-feature-encoder-for88.03±4.42
generalizing-graph-neural-networks-beyond83.14 ± 4.26
mixhop-higher-order-graph-convolution75.88 ± 4.90