HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد
Node Classification On Wisconsin
Node Classification On Wisconsin
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
5-HiGCN
94.99±0.65
Higher-order Graph Convolutional Network with Flower-Petals Laplacians on Simplicial Complexes
RDGNN-I
93.72 ± 4.59
Graph Neural Reaction Diffusion Models
H2GCN-RARE (λ=1.0)
90.00±2.97
GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy
O(d)-NSD
89.41 ± 4.74
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Gen-NSD
89.21 ± 3.84
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
M2M-GNN
89.01 ± 4.1
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
HDP
88.82 ± 3.40
Heterophilous Distribution Propagation for Graph Neural Networks
MGNN + Hetero-S (6 layers)
88.77
The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs
Conn-NSD
88.73±4.47
Sheaf Neural Networks with Connection Laplacians
Diag-NSD
88.63 ± 2.75
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
SADE-GCN
88.63±4.54
Self-attention Dual Embedding for Graphs with Heterophily
ACM-GCN+
88.43 ± 2.39
Revisiting Heterophily For Graph Neural Networks
FSGNN (3-hop)
88.43±3.22
Improving Graph Neural Networks with Simple Architecture Design
ACM-GCN
88.43 ± 3.22
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
88.43 ± 3.66
Revisiting Heterophily For Graph Neural Networks
LHS
88.32±2.3
Refining Latent Homophilic Structures over Heterophilic Graphs for Robust Graph Convolution Networks
ACM-GCN++
88.24 ± 3.16
Revisiting Heterophily For Graph Neural Networks
GloGNN++
88.04±3.22
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
ACMII-GCN+
88.04 ± 3.66
Revisiting Heterophily For Graph Neural Networks
Ordered GNN
88.04±3.63
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
0 of 63 row(s) selected.
Previous
Next
Node Classification On Wisconsin | SOTA | HyperAI