Node Classification On Usa Air Traffic
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy | Paper Title | Repository |
---|---|---|---|
Planetoid* | 64.7 | Revisiting Semi-Supervised Learning with Graph Embeddings | |
Union (Li et al., 2018) | 58.2 | Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning | |
UGT | 66.22±4.55 | Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity | |
GraphSAGE (Hamilton et al., [2017a]) | 31.6 | Inductive Representation Learning on Large Graphs | |
DEMO-Net(weight) | 64.7 | DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification | |
Intersection (Li et al., 2018) | 57.3 | Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning | |
GAT (Velickovic et al., 2018) | 58.5 | Graph Attention Networks |
0 of 7 row(s) selected.