Node Classification On Roman Empire
المقاييس
Accuracy (% )
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy (% ) | Paper Title | Repository |
---|---|---|---|
Polynormer | 92.55±0.37 | Polynormer: Polynomial-Expressive Graph Transformer in Linear Time | |
FaberNet | 92.24±0.43 | HoloNets: Spectral Convolutions do extend to Directed Graphs | - |
GNNMoE(GAT-like P) | 87.29±0.60 | Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification | |
GraphHyperConv | 92.27±0.57 | HyperAggregation: Aggregating over Graph Edges with Hypernetworks | |
GNNMoE(GCN-like P) | 85.05±0.55 | Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification | |
GNNMoE(SAGE-like P) | 86.00±0.45 | Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification | |
GCN | 91.27±0.20 | Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification |
0 of 7 row(s) selected.