HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Node Classification
Node Classification On Reddit
Node Classification On Reddit
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
shaDow-SAGE
97.03%
Decoupling the Depth and Scope of Graph Neural Networks
-
BNS-GCN
97.17%
BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling
FastGCN
93.70%
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling
EnGCN
96.65%
A Comprehensive Study on Large-Scale Graph Training: Benchmarking and Rethinking
CoFree-GNN
97.14±0.02%
Communication-Free Distributed GNN Training with Vertex Cut
-
ASGCN
96.27%
Adaptive Sampling Towards Fast Graph Representation Learning
TGCL+ResNet
81.06±1.18%
Deeper-GXX: Deepening Arbitrary GNNs
-
GraphSAGE
94.32%
Inductive Representation Learning on Large Graphs
SSGC
95.3
Simple Spectral Graph Convolution
SIGN
96.60%
SIGN: Scalable Inception Graph Neural Networks
GRACE
-
Deep Graph Contrastive Representation Learning
GraphSAINT
97.0%
GraphSAINT: Graph Sampling Based Inductive Learning Method
JKNet+DropEdge
97.02%
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
VQ-GNN (SAGE-Mean)
94.5 ± .0024
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization
PCAPass + XGBoost
96.26 ± 0.02%
Dimensionality Reduction Meets Message Passing for Graph Node Embeddings
-
shaDow-GAT
97.13%
Decoupling the Depth and Scope of Graph Neural Networks
-
0 of 16 row(s) selected.
Previous
Next