HyperAI

Node Classification On Pubmed

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
deep-autoencoder-like-nonnegative-matrix63.93%
cleora-a-simple-strong-and-scalable-graph80.2
measuring-and-relieving-the-over-smoothing77.4 ± 0.2
understanding-over-squashing-and-bottlenecks-179.10±0.11
multi-mask-aggregators-for-graph-neural86.00%
inferring-from-references-with-differences88.90
clarify-confused-nodes-through-separated91.55 ± 0.38
predict-then-propagate-graph-neural-networks79.73 ± 0.31
gresnet-graph-residuals-for-reviving-deep81.7%
gresnet-graph-residuals-for-reviving-deep82.2%
distilling-self-knowledge-from-contrastive88.86%
unifying-graph-convolutional-neural-networks-187.8 ± 0.6
auto-gnn-neural-architecture-search-of-graph79.7 ± 0.4%
fast-graph-representation-learning-with79.4 ± 2.2
convolutional-neural-networks-on-graphs-with74.4%
revisiting-semi-supervised-learning-with77.2%
clarify-confused-nodes-through-separated91.64 ± 0.53
graph-bert-only-attention-is-needed-for79.3%
n-gcn-multi-scale-graph-convolution-for-semi79.5%
is-heterophily-a-real-nightmare-for-graph90.74 ± 0.5
learning-to-make-predictions-on-graphs-with79.40%
mixhop-higher-order-graph-convolution80.8%
the-split-matters-flat-minima-methods-for90.64 ± 0.46%
tackling-oversmoothing-of-gnns-with-181.92±0.13
is-heterophily-a-real-nightmare-for-graph91.31 ± 0.6
cluster-gcn-an-efficient-algorithm-for-
graph-star-net-for-generalized-multi-task-177.2%
graph-representation-learning-beyond-node-and-
optimization-of-graph-neural-networks-with89.36 ± 0.57
splinecnn-fast-geometric-deep-learning-with88.88%
is-heterophily-a-real-nightmare-for-graph90.56 ± 0.39
diffwire-inductive-graph-rewiring-via-the68.19
deep-graph-infomax76.8 ± 0.6%
distilling-self-knowledge-from-contrastive88.79%
graphnas-graph-neural-architecture-search79.6 ± 0.4%
النموذج 3681.9%
semi-supervised-classification-with-graph79.0
graph-attention-networks79.0 ± 0.3%
structure-fusion-based-on-graph-convolutional80.0%
cn-motifs-perceptive-graph-neural-networks90.07± 0.43
a-flexible-generative-framework-for-graph78.4%
adagcn-adaboosting-graph-convolutional79.76 ± 0.27
nodenet-a-graph-regularised-neural-network90.21%
graph-infoclust-leveraging-cluster-level-node77.4 ± 1.9
a-capsule-network-based-model-for-learning78.45%
graph-trees-with-attention78.0
mitigating-degree-biases-in-message-passing86.86±0.12
graph-less-neural-networks-teaching-old-mlps-175.42 ± 2.31
diffwire-inductive-graph-rewiring-via-the86.07
large-scale-learnable-graph-convolutional79.5%
beyond-homophily-structure-aware-path-
dfnets-spectral-cnns-for-graphs-with-feedback85.2 ± 0.3
structure-fusion-based-on-graph-convolutional79.3%
graph-optimized-convolutional-networks79.7%
graphite-iterative-generative-modeling-of79.3 ± 0.03
certifiable-robustness-and-robust-training86%
multi-task-graph-autoencoders80.40%
deep-graph-contrastive-representation86.7 ± 0.1
graph-wavelet-neural-network-179.1%
gresnet-graph-residuals-for-reviving-deep83.0%
mixup-for-node-and-graph-classification87.9%
graph-u-nets79.6 ± 0.2%
distilling-self-knowledge-from-contrastive89.58%
get-rid-of-suspended-animation-problem-deep79.5%
gresnet-graph-residuals-for-reviving-deep81.2%
distilling-self-knowledge-from-contrastive89.53%
diffusion-improves-graph-learning-179.95%
19080755882.92 ± 0.13
hyperbolic-graph-convolutional-neural80.3%