Node Classification On Pattern
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy | Paper Title | Repository |
---|---|---|---|
Exphormer | 86.74 | Exphormer: Sparse Transformers for Graphs | - |
NeuralWalker | 86.977 ± 0.012 | Learning Long Range Dependencies on Graphs via Random Walks | - |
GRIT | 87.196 | Graph Inductive Biases in Transformers without Message Passing | - |
EIGENFORMER | 86.738 | Graph Transformers without Positional Encodings | - |
GPTrans-Nano | 86.734±0.008 | Graph Propagation Transformer for Graph Representation Learning | - |
GatedGCN+ | 87.029 ± 0.037 | Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence | - |
GatedGCN | 86.508 | Benchmarking Graph Neural Networks | - |
EGT | 86.821 | Global Self-Attention as a Replacement for Graph Convolution | - |
CKGCN | 88.661 | CKGConv: General Graph Convolution with Continuous Kernels | - |
TIGT | 86.680 | Topology-Informed Graph Transformer | - |
GPS | 86.685 | Recipe for a General, Powerful, Scalable Graph Transformer | - |
0 of 11 row(s) selected.