Node Classification On Pattern
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy | Paper Title | Repository |
---|---|---|---|
Exphormer | 86.74 | Exphormer: Sparse Transformers for Graphs | |
NeuralWalker | 86.977 ± 0.012 | Learning Long Range Dependencies on Graphs via Random Walks | |
GRIT | 87.196 | Graph Inductive Biases in Transformers without Message Passing | |
EIGENFORMER | 86.738 | Graph Transformers without Positional Encodings | - |
GPTrans-Nano | 86.734±0.008 | Graph Propagation Transformer for Graph Representation Learning | |
GatedGCN+ | 87.029 ± 0.037 | Unlocking the Potential of Classic GNNs for Graph-level Tasks: Simple Architectures Meet Excellence | |
GatedGCN | 86.508 | Benchmarking Graph Neural Networks | |
EGT | 86.821 | Global Self-Attention as a Replacement for Graph Convolution | |
CKGCN | 88.661 | CKGConv: General Graph Convolution with Continuous Kernels | |
TIGT | 86.680 | Topology-Informed Graph Transformer | |
GPS | 86.685 | Recipe for a General, Powerful, Scalable Graph Transformer |
0 of 11 row(s) selected.