Node Classification On Genius
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | 1:1 Accuracy |
---|---|
addressing-heterophily-in-node-classification | 91.72 ± 0.08 |
large-scale-learning-on-non-homophilous | - |
revisiting-heterophily-for-graph-neural | - |
revisiting-heterophily-for-graph-neural | - |
revisiting-heterophily-for-graph-neural | - |
joint-adaptive-feature-smoothing-and-topology | - |
finding-global-homophily-in-graph-neural | - |
revisiting-heterophily-for-graph-neural | - |
simple-and-deep-graph-convolutional-networks-1 | - |
new-benchmarks-for-learning-on-non | - |
mixhop-higher-order-graph-convolution | - |
feature-selection-key-to-enhance-node | - |
finding-global-homophily-in-graph-neural | - |
new-benchmarks-for-learning-on-non | - |
new-benchmarks-for-learning-on-non | - |
predict-then-propagate-graph-neural-networks | - |
simplifying-graph-convolutional-networks | - |
finding-global-homophily-in-graph-neural | - |
combining-label-propagation-and-simple-models-1 | - |
simplifying-graph-convolutional-networks | - |
gradient-gating-for-deep-multi-rate-learning | - |
new-benchmarks-for-learning-on-non | - |
combining-label-propagation-and-simple-models-1 | - |
finding-global-homophily-in-graph-neural | - |
semi-supervised-classification-with-graph | - |
graph-attention-networks | - |