Node Classification On Facebook
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy | Paper Title | Repository |
---|---|---|---|
GNNMoE(SAGE-like P) | 94.63±0.36 | Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification | |
Intersection (Li et al., 2018) | 59.8 | Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning | |
GCN_cheby (Kipf and Welling, 2017) | 64.6 | Semi-Supervised Classification with Graph Convolutional Networks | |
GraphSAGE (Hamilton et al., [2017a]) | 38.9 | Inductive Representation Learning on Large Graphs | |
GNNMoE(GCN-like P) | 95.53±0.35 | Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification | |
GCN (Kipf and Welling, 2017) | 57.5 | Semi-Supervised Classification with Graph Convolutional Networks | |
DEMO-Net(weight) | 91.9 | DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification | |
GNNMoE(GAT-like P) | 95.21±0.25 | Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification |
0 of 8 row(s) selected.