Node Classification On Europe Air Traffic
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy | Paper Title | Repository |
---|---|---|---|
GCN_cheby (Kipf and Welling, 2017) | 46.0 | Semi-Supervised Classification with Graph Convolutional Networks | |
UGT | 56.92 ±6.36 | Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity | |
DEMO-Net(weight) | 45.9 | DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification | |
Intersection (Li et al., 2018) | 44.3 | Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning | |
GAT (Velickovic et al., 2018) | 42.4 | Graph Attention Networks | |
GraphSAGE (Hamilton et al., [2017a]) | 27.2 | Inductive Representation Learning on Large Graphs | |
GCN (Kipf and Welling, 2017) | 37.1 | Semi-Supervised Classification with Graph Convolutional Networks |
0 of 7 row(s) selected.