Node Classification On Coauthor Physics
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Accuracy |
---|---|
mixture-of-experts-meets-decoupled-message | 97.03±0.13 |
distilling-self-knowledge-from-contrastive | 96.87% |
distilling-self-knowledge-from-contrastive | 97.05% |
exphormer-sparse-transformers-for-graphs | 96.89±0.09% |
mixture-of-experts-meets-decoupled-message | 96.81±0.22 |
towards-deeper-graph-neural-networks | 94 |
classic-gnns-are-strong-baselines-reassessing | 97.46 ± 0.10 |
inferring-from-references-with-differences | 97.22% |
graphmix-regularized-training-of-graph-neural | 94.49 ± 0.84 |
distilling-self-knowledge-from-contrastive | 96.87% |
distilling-self-knowledge-from-contrastive | 96.91% |
mixture-of-experts-meets-decoupled-message | 97.05±0.19 |
clarify-confused-nodes-through-separated | 98.69 ± 0.26 |
clarify-confused-nodes-through-separated | 98.63 ± 0.24 |