HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
تصنيف العقد
Node Classification On Coauthor Physics
Node Classification On Coauthor Physics
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
GNNMoE(GCN-like P)
97.03±0.13
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
-
LinkDist
96.87%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
-
CoLinkDist
97.05%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
-
Exphormer
96.89±0.09%
Exphormer: Sparse Transformers for Graphs
-
GNNMoE(SAGE-like P)
96.81±0.22
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
-
DAGNN (Ours)
94
Towards Deeper Graph Neural Networks
-
GCN
97.46 ± 0.10
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
-
3ference
97.22%
Inferring from References with Differences for Semi-Supervised Node Classification on Graphs
GraphMix (GCN)
94.49 ± 0.84
GraphMix: Improved Training of GNNs for Semi-Supervised Learning
-
CoLinkDistMLP
96.87%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
-
LinkDistMLP
96.91%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
-
GNNMoE(GAT-like P)
97.05±0.19
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
-
NCSAGE
98.69 ± 0.26
Clarify Confused Nodes via Separated Learning
-
NCGCN
98.63 ± 0.24
Clarify Confused Nodes via Separated Learning
-
0 of 14 row(s) selected.
Previous
Next
Node Classification On Coauthor Physics | SOTA | HyperAI