HyperAI

Node Classification On Coauthor Physics

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
mixture-of-experts-meets-decoupled-message97.03±0.13
distilling-self-knowledge-from-contrastive96.87%
distilling-self-knowledge-from-contrastive97.05%
exphormer-sparse-transformers-for-graphs96.89±0.09%
mixture-of-experts-meets-decoupled-message96.81±0.22
towards-deeper-graph-neural-networks94
classic-gnns-are-strong-baselines-reassessing97.46 ± 0.10
inferring-from-references-with-differences97.22%
graphmix-regularized-training-of-graph-neural94.49 ± 0.84
distilling-self-knowledge-from-contrastive96.87%
distilling-self-knowledge-from-contrastive96.91%
mixture-of-experts-meets-decoupled-message97.05±0.19
clarify-confused-nodes-through-separated98.69 ± 0.26
clarify-confused-nodes-through-separated98.63 ± 0.24