HyperAI

Node Classification On Coauthor Cs

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
half-hop-a-graph-upsampling-approach-for94.71%
distilling-self-knowledge-from-contrastive95.68%
distilling-self-knowledge-from-contrastive95.66%
clarify-confused-nodes-through-separated96.48 ± 0.25
distilling-self-knowledge-from-contrastive95.80%
exphormer-sparse-transformers-for-graphs94.93±0.46%
unifying-graph-convolutional-neural-networks-194.8 ± 0.4
snore-scalable-unsupervised-learning-of88.7%
inferring-from-references-with-differences95.99%
sign-scalable-inception-graph-neural-networks91.98 ± 0.50
distilling-self-knowledge-from-contrastive95.74%
graph-infoclust-leveraging-cluster-level-node89.4 ± 0.4
mixture-of-experts-meets-decoupled-message95.68±0.24
towards-deeper-graph-neural-networks92.8%
clarify-confused-nodes-through-separated96.64 ± 0.29
half-hop-a-graph-upsampling-approach-for94.06%
diffusion-improves-graph-learning-193.01%
half-hop-a-graph-upsampling-approach-for95.11%
mixture-of-experts-meets-decoupled-message95.72±0.23
graphmix-regularized-training-of-graph-neural91.83 ± 0.51
half-hop-a-graph-upsampling-approach-for95.13%
classic-gnns-are-strong-baselines-reassessing96.38±0.11
mixture-of-experts-meets-decoupled-message95.81±0.26