Node Classification On Cluster
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy | Paper Title | Repository |
---|---|---|---|
GatedGCN-PE | 76.08 | Benchmarking Graph Neural Networks | |
Exphormer | 78.22±0.045 | Exphormer: Sparse Transformers for Graphs | |
GRIT | 80.026 | Graph Inductive Biases in Transformers without Message Passing | |
ARGNP | 77.35 | Automatic Relation-aware Graph Network Proliferation | |
EIGENFORMER | 77.456 | Graph Transformers without Positional Encodings | - |
GatedGCN+ | 79.128 ± 0.235 | Unlocking the Potential of Classic GNNs for Graph-level Tasks: Simple Architectures Meet Excellence | |
GPS | 77.95 | Recipe for a General, Powerful, Scalable Graph Transformer | |
GPTrans-Nano | 78.07 | Graph Propagation Transformer for Graph Representation Learning | |
EGT | 79.232 | Global Self-Attention as a Replacement for Graph Convolution | |
TIGT | 78.033 | Topology-Informed Graph Transformer | |
CKGCN | 79.003 | CKGConv: General Graph Convolution with Continuous Kernels | |
NeuralWalker | 78.189 ± 0.188 | Learning Long Range Dependencies on Graphs via Random Walks |
0 of 12 row(s) selected.