HyperAI

Node Classification On Citeseer

المقاييس

Accuracy
Validation

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracyValidation
multi-task-graph-autoencoders71.80%YES
predict-then-propagate-graph-neural-networks75.83%YES
graph-optimized-convolutional-networks71.8%-
snore-scalable-unsupervised-learning-of66.6-
splinecnn-fast-geometric-deep-learning-with79.20%-
the-split-matters-flat-minima-methods-for77.99 ± 1.57%-
is-heterophily-a-real-nightmare-for-graph81.56 ± 1.15-
learning-discrete-structures-for-graph-neural75.0-
learning-to-make-predictions-on-graphs-with71.60%-
gresnet-graph-residuals-for-reviving-deep72.7%-
fast-graph-representation-learning-with70.0 ± 1.4-
is-heterophily-a-real-nightmare-for-graph81.58 ± 1.23-
graph-representation-learning-beyond-node-and75.53-
beyond-homophily-structure-aware-path--
gresnet-graph-residuals-for-reviving-deep73.5%-
mitigating-degree-biases-in-message-passing76.59±0.98-
graphite-iterative-generative-modeling-of71.0 ± 0.07-
structure-fusion-based-on-graph-convolutional73.4%-
hpgat-high-order-proximity-informed-graph73.0%-
adagcn-adaboosting-graph-convolutional76.22 ± 0.20-
optimization-of-graph-neural-networks-with80.52 ± 0.14-
understanding-over-squashing-and-bottlenecks-172.58±0.20-
inferring-from-references-with-differences76.33-
measuring-and-relieving-the-over-smoothing69.7%-
gresnet-graph-residuals-for-reviving-deep71.6%-
just-jump-dynamic-neighborhood-aggregation-in74.50%-
distilling-self-knowledge-from-contrastive75.79%-
dfnets-spectral-cnns-for-graphs-with-feedback74.7 ± 0.4-
graph-trees-with-attention74.5-
distilling-self-knowledge-from-contrastive74.72%-
get-rid-of-suspended-animation-problem-deep72.7%-
transitivity-preserving-graph-representation76.08±2.5-
certifiable-robustness-and-robust-training68%-
graph-adversarial-training-dynamically73.7%-
graph-less-neural-networks-teaching-old-mlps-171.77± 2.01-
cleora-a-simple-strong-and-scalable-graph75.7-
distilling-self-knowledge-from-contrastive75.77%-
distilling-self-knowledge-from-contrastive75.25%-
deep-autoencoder-like-nonnegative-matrix42.42%-
graph-attention-networks72.5 ± 0.7%YES
is-heterophily-a-real-nightmare-for-graph81.68 ± 0.97-
graph-u-nets73.2 ± 0.5%-
n-gcn-multi-scale-graph-convolution-for-semi72.2%-
graphnas-graph-neural-architecture-search73.1 ± 0.9%-
unifying-graph-convolutional-neural-networks-178.7 ± 0.6-
diffwire-inductive-graph-rewiring-via-the72.26-
graph-infoclust-leveraging-cluster-level-node71.9 ± 1.4-
tackling-oversmoothing-of-gnns-with-161.25±1.29-
multi-mask-aggregators-for-graph-neural76.30%-
graph-bert-only-attention-is-needed-for71.2%-
mixhop-higher-order-graph-convolution71.4%YES
deep-graph-infomax71.8 ± 0.7%-
large-scale-learnable-graph-convolutional73.0 ± 0.6%-
graph-wavelet-neural-network-171.7%-
predict-then-propagate-graph-neural-networks75.73%-
diffwire-inductive-graph-rewiring-via-the66.71-
is-heterophily-a-real-nightmare-for-graph82.07 ± 1.04-
watch-your-step-learning-node-embeddings-via51.5%-
a-flexible-generative-framework-for-graph74.5%YES
nodenet-a-graph-regularised-neural-network80.09%-
deep-graph-contrastive-representation72.1 ± 0.5-
structure-fusion-based-on-graph-convolutional73.5%-
cn-motifs-perceptive-graph-neural-networks76.81±1.40-
gresnet-graph-residuals-for-reviving-deep73.7%-
diffusion-improves-graph-learning-173.35%-
semi-supervised-classification-with-graph70.3-
strong-transitivity-relations-and-graph--
convolutional-neural-networks-on-graphs-with69.8%-
graph-star-net-for-generalized-multi-task-171.0-
revisiting-semi-supervised-learning-with64.7%-