HyperAIHyperAI

Node Classification On Citeseer

المقاييس

Accuracy
Validation

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
Accuracy
Validation
Paper TitleRepository
MTGAE71.80%YESMulti-Task Graph Autoencoders-
PPNP75.83%YESPredict then Propagate: Graph Neural Networks meet Personalized PageRank-
GOCN71.8%-Robust Graph Data Learning via Latent Graph Convolutional Representation-
SNoRe66.6-SNoRe: Scalable Unsupervised Learning of Symbolic Node Representations-
SplineCNN79.20%-SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels-
Graph-MLP + SWA77.99 ± 1.57%-The Split Matters: Flat Minima Methods for Improving the Performance of GNNs-
ACMII-Snowball-381.56 ± 1.15-Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?-
LDS-GNN75.0-Learning Discrete Structures for Graph Neural Networks-
alpha-LoNGAE71.60%-Learning to Make Predictions on Graphs with Autoencoders-
GResNet(GCN)72.7%-GResNet: Graph Residual Network for Reviving Deep GNNs from Suspended Animation-
APPNP70.0 ± 1.4-Fast Graph Representation Learning with PyTorch Geometric-
ACM-Snowball-281.58 ± 1.23-Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?-
PairE75.53-Graph Representation Learning Beyond Node and Homophily-
PathNet--Beyond Homophily: Structure-aware Path Aggregation Graph Neural Network
GResNet(GAT)73.5%-GResNet: Graph Residual Network for Reviving Deep GNNs from Suspended Animation-
CGT76.59±0.98-Mitigating Degree Biases in Message Passing Mechanism by Utilizing Community Structures-
Graphite71.0 ± 0.07-Graphite: Iterative Generative Modeling of Graphs-
SF-GCN73.4%-Structure fusion based on graph convolutional networks for semi-supervised classification-
hpGAT73.0%-hpGAT: High-order Proximity Informed Graph Attention Network-
AdaGCN76.22 ± 0.20-AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models-
0 of 70 row(s) selected.
Node Classification On Citeseer | SOTA | HyperAI