HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
تصنيف العقد
Node Classification On Amz Photo
Node Classification On Amz Photo
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
GLNN
92.11± 1.08%
Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation
-
GraphSAGE
95.03%
Half-Hop: A graph upsampling approach for slowing down message passing
-
HH-GraphSAGE
94.55%
Half-Hop: A graph upsampling approach for slowing down message passing
-
NCSAGE
95.93 ± 0.36
Clarify Confused Nodes via Separated Learning
-
HH-GCN
94.52%
Half-Hop: A graph upsampling approach for slowing down message passing
-
CGT
95.73±0.84
Mitigating Degree Biases in Message Passing Mechanism by Utilizing Community Structures
-
Graph InfoClust (GIC)
90.4 ± 1.0
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning
-
JK (Heat Diffusion)
92.93%
Diffusion Improves Graph Learning
-
Exphormer
95.35±0.22%
Exphormer: Sparse Transformers for Graphs
-
SIGN
91.72 ± 1.20
SIGN: Scalable Inception Graph Neural Networks
-
NCGCN
95.45 ± 0.45
Clarify Confused Nodes via Separated Learning
-
DAGNN (Ours)
92%
Towards Deeper Graph Neural Networks
-
GCN
93.59%
Half-Hop: A graph upsampling approach for slowing down message passing
-
CPF-ind-GAT
94.10%
Extract the Knowledge of Graph Neural Networks and Go Beyond it: An Effective Knowledge Distillation Framework
-
0 of 14 row(s) selected.
Previous
Next
Node Classification On Amz Photo | SOTA | HyperAI