HyperAI

Node Classification On Amz Photo

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
graph-less-neural-networks-teaching-old-mlps-192.11± 1.08%
half-hop-a-graph-upsampling-approach-for95.03%
half-hop-a-graph-upsampling-approach-for94.55%
clarify-confused-nodes-through-separated95.93 ± 0.36
half-hop-a-graph-upsampling-approach-for94.52%
mitigating-degree-biases-in-message-passing95.73±0.84
graph-infoclust-leveraging-cluster-level-node90.4 ± 1.0
diffusion-improves-graph-learning-192.93%
exphormer-sparse-transformers-for-graphs95.35±0.22%
sign-scalable-inception-graph-neural-networks91.72 ± 1.20
clarify-confused-nodes-through-separated95.45 ± 0.45
towards-deeper-graph-neural-networks92%
half-hop-a-graph-upsampling-approach-for93.59%
extract-the-knowledge-of-graph-neural94.10%