Node Classification On Amz Comp
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy | Paper Title | Repository |
---|---|---|---|
Graph InfoClust (GIC) | 81.5 ± 1.0 | Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning | - |
GCN (Heat Diffusion) | 86.77% | Diffusion Improves Graph Learning | - |
GraphSAGE | 84.79% | Half-Hop: A graph upsampling approach for slowing down message passing | - |
GCN | 90.22% | Half-Hop: A graph upsampling approach for slowing down message passing | - |
HH-GCN | 90.92% | Half-Hop: A graph upsampling approach for slowing down message passing | - |
HH-GraphSAGE | 86.6% | Half-Hop: A graph upsampling approach for slowing down message passing | - |
SIGN | 85.93 ± 1.21 | SIGN: Scalable Inception Graph Neural Networks | - |
0 of 7 row(s) selected.