HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد
Node Classification On Amazon Photo 1
Node Classification On Amazon Photo 1
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
GraphSAGE
96.78 ± 0.23
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
GAT
96.60 ± 0.33
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
GCN
96.10 ± 0.46
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
GNNMoE(GCN-like P)
95.81±0.41
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
GNNMoE(GAT-like P)
95.71±0.37
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
GNNMoE(SAGE-like P)
95.46±0.24
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
3ference
95.05%
Inferring from References with Differences for Semi-Supervised Node Classification on Graphs
CoLinkDist
94.36%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
CoLinkDistMLP
94.12%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
LinkDistMLP
93.83%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
LinkDist
93.75%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
0 of 11 row(s) selected.
Previous
Next
Node Classification On Amazon Photo 1 | SOTA | HyperAI