HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Node Classification On Non Homophilic
Node Classification On Non Homophilic 13
Node Classification On Non Homophilic 13
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
Repository
LINKX
84.71 ± 0.52
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
GCNJK
81.63 ± 0.54
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
ACM-GCN
82.73 ± 0.52
Revisiting Heterophily For Graph Neural Networks
GAT
81.53 ± 0.55
Graph Attention Networks
WRGAT
74.32 ± 0.53
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
APPNP
74.33 ± 0.38
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
C&S 1-hop
74.28 ± 1.19
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
L Prop 2-hop
74.13 ± 0.46
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
ACMII-GCN++
85.95 ± 0.26
Revisiting Heterophily For Graph Neural Networks
MixHop
83.47 ± 0.71
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
GATJK
80.69 ± 0.36
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
GloGNN
85.57 ± 0.35
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
H2GCN
81.31 ± 0.60
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
C&S 2-hop
78.40 ± 3.12
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
MLP
73.61 ± 0.40
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
84.95 ± 0.43
Revisiting Heterophily For Graph Neural Networks
LINK
80.79 ± 0.49
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
SGC 2-hop
76.09 ± 0.45
Simplifying Graph Convolutional Networks
ACM-GCN+
85.05 ± 0.19
Revisiting Heterophily For Graph Neural Networks
GloGNN++
85.74 ± 0.42
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
0 of 28 row(s) selected.
Previous
Next