HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Network Pruning
Network Pruning On Imagenet
Network Pruning On Imagenet
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
MobileNetV1-50% FLOPs
70.7
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-2.3 GFLOPs
78.79
Pruning Filters for Efficient ConvNets
ResNet50-1G FLOPs
74.2
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-1G FLOPs
74.2
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-1.5 GFLOPs
78.07
Pruning Filters for Efficient ConvNets
TAS-pruned ResNet-50
76.20
Network Pruning via Transformable Architecture Search
ResNet50
73.14
AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural Networks
ResNet50-2G FLOPs
76.4
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-1G FLOPs
76.376
Pruning Filters for Efficient ConvNets
SqueezeNet (6-bit Deep Compression)
57.5%
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
RegX-1.6G
77.97
Group Fisher Pruning for Practical Network Compression
ResNet50-3G FLOPs
77.1
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50 2.0 GFLOPS
77.70
Knapsack Pruning with Inner Distillation
ResNet50 2.5 GFLOPS
78.0
Knapsack Pruning with Inner Distillation
ResNet50
75.59
Network Pruning That Matters: A Case Study on Retraining Variants
MobileNetV2
73.42
Group Fisher Pruning for Practical Network Compression
0 of 16 row(s) selected.
Previous
Next