Multi Object Tracking On Sportsmot
المقاييس
AssA
DetA
HOTA
IDF1
MOTA
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | AssA | DetA | HOTA | IDF1 | MOTA |
---|---|---|---|---|---|
quasi-dense-instance-similarity-learning | 47.2 | 77.5 | 60.4 | 62.3 | 90.1 |
ettrack-enhanced-temporal-motion-predictor | 62.1 | 88.8 | 74.3 | 74.5 | 96.8 |
bytetrack-multi-object-tracking-by-1 | 52.3 | 78.5 | 64.1 | 71.4 | 95.9 |
deep-hm-sort-enhancing-multi-object-tracking | 72.7 | 88.3 | 80.1 | 85.2 | 96.6 |
tracking-objects-as-points | 48.0 | 82.1 | 62.7 | 60.0 | 90.8 |
sportsmot-a-large-multi-object-tracking | 62.0 | 88.5 | 74.1 | 74.4 | 96.5 |
sportsmot-a-large-multi-object-tracking | 54.8 | 78.8 | 65.7 | 74.1 | 96.2 |
observation-centric-sort-rethinking-sort-for | 61.5 | 88.5 | 73.7 | 74.0 | 96.5 |
memotr-long-term-memory-augmented-transformer | 57.8 | 82.0 | 68.8 | 69.9 | 90.2 |
transtrack-multiple-object-tracking-with | 57.5 | 82.7 | 68.9 | 71.5 | 92.6 |
memotr-long-term-memory-augmented-transformer | 59.1 | 83.1 | 70.0 | 71.4 | 91.5 |
a-simple-baseline-for-multi-object-tracking | 34.7 | 70.2 | 49.3 | 53.5 | 86.4 |
global-tracking-transformers | 45.9 | 64.8 | 54.5 | 55.8 | 67.9 |
exploring-learning-based-motion-models-in | 58.6 | 86.7 | 71.3 | 71.1 | 94.9 |
engineering-an-efficient-object-tracker-for-1 | 70.3 | 88.1 | 78.7 | 81.7 | 96.5 |
associate-everything-detected-facilitating | 70.1 | 89.4 | 79.1 | 81.8 | 97.1 |
beyond-kalman-filters-deep-learning-based | 63.7 | 87.5 | 74.6 | 76.9 | 96.7 |
iterative-scale-up-expansioniou-and-deep | 67.7 | 88.2 | 77.2 | 79.8 | 96.3 |
gta-global-tracklet-association-for-multi | 74.5 | 88.2 | 81.0 | 86.5 | 96.3 |
motiontrack-learning-motion-predictor-for | 61.7 | 88.8 | 74.0 | 74.0 | 96.6 |