HyperAI

Multi Object Tracking On Sportsmot

المقاييس

AssA
DetA
HOTA
IDF1
MOTA

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAssADetAHOTAIDF1MOTA
quasi-dense-instance-similarity-learning47.277.560.462.390.1
ettrack-enhanced-temporal-motion-predictor62.188.874.374.596.8
bytetrack-multi-object-tracking-by-152.378.564.171.495.9
deep-hm-sort-enhancing-multi-object-tracking72.788.380.185.296.6
tracking-objects-as-points48.082.162.760.090.8
sportsmot-a-large-multi-object-tracking62.088.574.174.496.5
sportsmot-a-large-multi-object-tracking54.878.865.774.196.2
observation-centric-sort-rethinking-sort-for61.588.573.774.096.5
memotr-long-term-memory-augmented-transformer57.882.068.869.990.2
transtrack-multiple-object-tracking-with57.582.768.971.592.6
memotr-long-term-memory-augmented-transformer59.183.170.071.491.5
a-simple-baseline-for-multi-object-tracking34.770.249.353.586.4
global-tracking-transformers45.964.854.555.867.9
exploring-learning-based-motion-models-in58.686.771.371.194.9
engineering-an-efficient-object-tracker-for-170.388.178.781.796.5
associate-everything-detected-facilitating70.189.479.181.897.1
beyond-kalman-filters-deep-learning-based63.787.574.676.996.7
iterative-scale-up-expansioniou-and-deep67.788.277.279.896.3
gta-global-tracklet-association-for-multi74.588.281.086.596.3
motiontrack-learning-motion-predictor-for61.788.874.074.096.6