HyperAI

Motion Forecasting On Argoverse Cvpr 2020

المقاييس

DAC (K=6)
MR (K=1)
MR (K=6)
brier-minFDE (K=6)
minADE (K=1)
minADE (K=6)
minFDE (K=1)
minFDE (K=6)

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
DAC (K=6)
MR (K=1)
MR (K=6)
brier-minFDE (K=6)
minADE (K=1)
minADE (K=6)
minFDE (K=1)
minFDE (K=6)
Paper TitleRepository
fyyyy0.98310.59330.16742.09991.71760.88533.79661.4055--
MacFormer0.98630.55960.12721.76671.65650.81213.60811.2141TENET: Transformer Encoding Network for Effective Temporal Flow on Motion Prediction-
Challenge0.92630.74980.74984.92092.16862.16864.92094.9209--
NCTU_3095120330.88570.83480.83487.88753.53333.53337.88757.8875--
Multiple Trajectories0.91830.73520.59014.09992.38651.60555.4883.4055--
Constant-V-Forecating(very very naive)0.89770.81220.69166.13152.96312.34326.81165.437--
MFT0.98770.57910.14321.91621.68560.81863.75881.2754--
hitljx_test_sub0.98360.58730.15972.04951.70240.86793.76421.355--
whr_test0.98380.57010.14381.87521.62420.83313.581.2748--
HYU_ACE0.91240.87740.55044.14573.4671.78757.45463.4512--
DF-RNN0.98560.71610.15892.10822.27090.95835.02161.4138--
phuang0.97380.66850.66854.09721.83121.83124.09724.0972--
be_s2lossf_38460.98740.55980.13061.781.62440.813.55721.1996--
lstm0.98870.64670.16762.36131.91080.994.25971.6668--
Gilgamesh0.96710.83550.48894.19883.64951.8888.11973.5044--
CMAN(av1_demo)0.98260.6690.18492.0832.03630.91054.58071.4341--
CU-aware LaneGCN0.98430.56650.14741.9541.62170.82943.55081.2595--
tjxu0.97590.67950.67954.17041.87051.87054.17044.1704--
Lotus0.98710.58770.14341.99221.73680.89483.78741.2978--
FRM0.98780.57280.1431.93651.70630.81653.74861.2671Leveraging Future Relationship Reasoning for Vehicle Trajectory Prediction-
0 of 299 row(s) selected.