HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Long Tail Learning
Long Tail Learning On Coco Mlt
Long Tail Learning On Coco Mlt
المقاييس
Average mAP
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Average mAP
Paper Title
Repository
DB Focal(ResNet-50)
53.55
Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets
PG Loss(ResNet-50)
54.43
Probability Guided Loss for Long-Tailed Multi-Label Image Classification
-
LDAM(ResNet-50)
40.53
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
RS(ResNet-50)
46.97
Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
ML-GCN(ResNet-50)
44.24
Multi-Label Image Recognition with Graph Convolutional Networks
Focal Loss(ResNet-50)
49.46
Focal Loss for Dense Object Detection
LMPT(ResNet-50)
58.97
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
OLTR(ResNet-50)
45.83
Large-Scale Long-Tailed Recognition in an Open World
LTML(ResNet-50)
56.90
Long-Tailed Multi-Label Visual Recognition by Collaborative Training on Uniform and Re-Balanced Samplings
-
CB Loss(ResNet-50)
49.06
Class-Balanced Loss Based on Effective Number of Samples
CLIP(ViT-B/16)
60.17
Learning Transferable Visual Models From Natural Language Supervision
CLIP(ResNet-50)
56.19
Learning Transferable Visual Models From Natural Language Supervision
LMPT(ViT-B/16)
66.19
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
0 of 13 row(s) selected.
Previous
Next