HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Intent Detection
Intent Detection On Mixsnips
Intent Detection On Mixsnips
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
GL-GIN
95.6
GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling
DGIF
97.8
A Dynamic Graph Interactive Framework with Label-Semantic Injection for Spoken Language Understanding
-
SLIM
97.2
SLIM: Explicit Slot-Intent Mapping with BERT for Joint Multi-Intent Detection and Slot Filling
RoBERTa (PACL)
96.5
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
AGIF
96.5
AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent Detection and Slot Filling
Co-guiding Net
97.7
Co-guiding Net: Achieving Mutual Guidances between Multiple Intent Detection and Slot Filling via Heterogeneous Semantics-Label Graphs
BiSLU
97.8
Joint Multiple Intent Detection and Slot Filling with Supervised Contrastive Learning and Self-Distillation
SSRAN
98.4
A Scope Sensitive and Result Attentive Model for Multi-Intent Spoken Language Understanding
-
SLIM (PACL)
96.9
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
Global Intent-Slot Co-occurence
95.5
Enhancing Joint Multiple Intent Detection and Slot Filling with Global Intent-Slot Co-occurrence
Uni-MIS
97.2
Uni-MIS: United Multiple Intent Spoken Language Understanding via Multi-View Intent-Slot Interaction
MISCA
97.3
MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention
Topic Information
96.3
Exploiting Topic Information for Joint Intent Detection and Slot Filling
-
TFMN (PACL)
97.4
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
UGEN
96.9
Incorporating Instructional Prompts into a Unified Generative Framework for Joint Multiple Intent Detection and Slot Filling
TFMN
97.7
A Transformer-based Threshold-Free Framework for Multi-Intent NLU
-
0 of 16 row(s) selected.
Previous
Next