HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Image Retrieval
Image Retrieval On Rparis Medium
Image Retrieval On Rparis Medium
المقاييس
mAP
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
mAP
Paper Title
Repository
HED-N-GAN
76.6
Dark Side Augmentation: Generating Diverse Night Examples for Metric Learning
HOW
81.6
Learning and aggregating deep local descriptors for instance-level recognition
FIRe
85.3
Learning Super-Features for Image Retrieval
R – [O] –CroW
70.4
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
R–R-MAC
78.9
Particular object retrieval with integral max-pooling of CNN activations
HesAff–rSIFT–SMK*
59.0
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Token
89.34
Learning Token-based Representation for Image Retrieval
DELF–ASMK*+SP
76.9
Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–ASMK*
61.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELF–HQE+SP
84.0
Large-Scale Image Retrieval with Attentive Deep Local Features
Dino
75.3
Emerging Properties in Self-Supervised Vision Transformers
HesAff–rSIFT–HQE+SP
70.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELG+ α QE reranking + RRT reranking
88.5
Instance-level Image Retrieval using Reranking Transformers
HesAff–rSIFT–SMK*+SP
59.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R–GeM
77.2
Fine-tuning CNN Image Retrieval with No Human Annotation
ResNet101+ArcFace GLDv2-train-clean
84.9
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
HesAff–rSIFT–HQE
68.9
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–VLAD
43.6
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R – [O] –SPoC
69.2
Aggregating Deep Convolutional Features for Image Retrieval
R – [O] –MAC
66.2
Particular object retrieval with integral max-pooling of CNN activations
0 of 23 row(s) selected.
Previous
Next