HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Image Retrieval
Image Retrieval On Roxford Hard
Image Retrieval On Roxford Hard
المقاييس
mAP
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
mAP
Paper Title
Repository
DELF–ASMK*+SP
43.1
Large-Scale Image Retrieval with Attentive Deep Local Features
R – [O] –MAC
18.0
Particular object retrieval with integral max-pooling of CNN activations
DELG+ α QE reranking+ RRT reranking
64
Instance-level Image Retrieval using Reranking Transformers
Hypergraph propagation+community selection
73
Hypergraph Propagation and Community Selection for Objects Retrieval
Token
66.57
Learning Token-based Representation for Image Retrieval
HesAff–rSIFT–VLAD
13.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–SMK*+SP
35.8
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELF–HQE+SP
50.3
Large-Scale Image Retrieval with Attentive Deep Local Features
R–GeM
38.5
Fine-tuning CNN Image Retrieval with No Human Annotation
HesAff–rSIFT–ASMK*
36.4
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Dino
24.3
Emerging Properties in Self-Supervised Vision Transformers
FIRe
61.2
Learning Super-Features for Image Retrieval
HesAff–rSIFT–HQE+SP
49.7
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–ASMK*+SP
36.7
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
ResNet101+ArcFace GLDv2-train-clean
51.6
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
R–R-MAC
32.4
Particular object retrieval with integral max-pooling of CNN activations
HesAff–rSIFT–SMK*
35.4
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HOW
56.9
Learning and aggregating deep local descriptors for instance-level recognition
R – [O] –CroW
13.3
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
HesAff–rSIFT–HQE
41.3
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
0 of 23 row(s) selected.
Previous
Next