HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
النظام
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
تسجيل الدخول
تسجيل الدخول
الرئيسية
SOTA
Image Retrieval
Image Retrieval On Oxf5K
Image Retrieval On Oxf5K
المقاييس
MAP
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
MAP
Paper Title
Repository
IsoMap [32]
77.9%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
Offline Diffusion
96.2%
Efficient Image Retrieval via Decoupling Diffusion into Online and Offline Processing
DIR+QE*
89%
Deep Image Retrieval: Learning global representations for image search
DELF+FT+ATT
83.8%
Large-Scale Image Retrieval with Attentive Deep Local Features
PCA [51]
82.6%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
SIFT+IME layer
62.2%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
LLE [33]
51.7%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
DELF+FT+ATT+DIR+QE
90.0%
Large-Scale Image Retrieval with Attentive Deep Local Features
IME
83.5%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
CNN+IME layer
92%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
siaMAC+QE*
82.9%
CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples
0 of 11 row(s) selected.
Previous
Next