Image Classification On Gashissdb
المقاييس
Accuracy
F1-Score
Precision
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Accuracy | F1-Score | Precision |
---|---|---|---|
efficientnet-rethinking-model-scaling-for | 98.11 | 99.01 | 99.94 |
coatnet-marrying-convolution-and-attention | 98.74 | 99.38 | 99.97 |
deep-residual-learning-for-image-recognition | 98.47 | 99.19 | 99.94 |
deep-residual-learning-for-image-recognition | 98.56 | 99.24 | 99.94 |
aggregated-residual-transformations-for-deep | 98.59 | 99.25 | 99.94 |
densely-connected-convolutional-networks | 96.90 | 98.38 | 99.91 |
regnet-self-regulated-network-for-image | 97.48 | 98.70 | 99.97 |
res2net-a-new-multi-scale-backbone | 98.68 | 99.29 | 99.91 |