HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
الرسوم البيانية للانحدار
Graph Regression On Zinc
Graph Regression On Zinc
المقاييس
MAE
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
MAE
Paper Title
Graph-JEPA
0.434
Graph-level Representation Learning with Joint-Embedding Predictive Architectures
FactorGCN
0.366
Factorizable Graph Convolutional Networks
ChebNet
0.360
An Experimental Study of the Transferability of Spectral Graph Networks
BoP
0.297
From Primes to Paths: Enabling Fast Multi-Relational Graph Analysis
MMA
0.156
Multi-Mask Aggregators for Graph Neural Networks
PNA
0.142
Principal Neighbourhood Aggregation for Graph Nets
CRaWl
0.101
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
PIN
0.096
Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
CIN-small
0.094
Weisfeiler and Lehman Go Cellular: CW Networks
CIN++-small
0.091
CIN++: Enhancing Topological Message Passing
CRaWl+VN
0.088
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
CIN
0.079
Weisfeiler and Lehman Go Cellular: CW Networks
EIGENFORMER
0.077
Graph Transformers without Positional Encodings
CIN++-500k
0.077
CIN++: Enhancing Topological Message Passing
GraphMLPMixer
0.075 ± 0.001
A Generalization of ViT/MLP-Mixer to Graphs
CIN++
0.074
CIN++: Enhancing Topological Message Passing
SAGNN
0.072±0.002
Substructure Aware Graph Neural Networks
GPS
0.070 ± 0.002
Recipe for a General, Powerful, Scalable Graph Transformer
GINE
0.070 ± 0.004
Recipe for a General, Powerful, Scalable Graph Transformer
PDF
0.066 ± 0.002
Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering
0 of 27 row(s) selected.
Previous
Next
Graph Regression On Zinc | SOTA | HyperAI